scholarly journals Granulocyte-colony stimulating factor drives the in vitro differentiation of human dendritic cells that induce anergy in naïve T cells

2010 ◽  
Vol 40 (11) ◽  
pp. 3097-3106 ◽  
Author(s):  
Maura Rossetti ◽  
Silvia Gregori ◽  
Maria Grazia Roncarolo
Blood ◽  
2000 ◽  
Vol 95 (8) ◽  
pp. 2484-2490 ◽  
Author(s):  
Mario Arpinati ◽  
Cherie L. Green ◽  
Shelly Heimfeld ◽  
Jill E. Heuser ◽  
Claudio Anasetti

Peripheral blood stem cells (PBSC) obtained from granulocyte-colony stimulating factor (G-CSF)-mobilized donors are increasingly used for allogeneic transplantation. Despite a 10-fold higher dose of transplanted T cells, acute graft-versus-host disease (GVHD) does not develop in higher proportion in recipients of PBSC than in recipients of marrow. T cells from G-CSF-treated experimental animals preferentially produce IL-4 and IL-10, cytokines characteristic of Th2 responses, which are associated with diminished GVHD-inducing ability. We hypothesized that G-CSF-mobilized PBSC contain antigen-presenting cells, which prime T-lymphocytes to produce Th2 cytokines. Two distinct lineages of dendritic cells (DC) have been described in humans, DC1 and DC2, according to their ability to induce naive T-cell differentiation to Th1 and Th2 effector cells, respectively. We have used multicolor microfluorometry to enumerate DC1 and DC2 in the peripheral blood of normal donors. G-CSF treatment with 10 to 16 μg/kg per day for 5 days increased peripheral blood DC2 counts from a median of 4.9 × 106/L to 24.8 × 106/L (P = .0009), whereas DC1 counts did not change. Purified DC1, from either untreated or G-CSF treated donors, induced the proliferation of allogeneic naive T cells, but fresh DC2 were poor stimulators. Tumor necrosis factor- (TNF-)-activated DC1 induced allogeneic naive T cells to produce IFN-γ, which is typical of Th1 responses, whereas TNF--activated DC2 induced allogeneic naive T cells to produce IL-4 and IL-10, which are typical of Th2 responses. PBSC transplants contained higher doses of DC2 than marrow transplants (median, 2.4 × 106/kg versus 0.5 × 106/kg) (P = .006), whereas the dose of DC1 was comparable. Thus, it is conceivable that transplantation of G-CSF-stimulated PBSC does not result in overwhelming acute GVHD because the graft contains predominantly Th2-inducing DC. Adoptive transfer of purified DC2 may be exploited to induce immune deviation after transplantation of hematopoietic stem cells or organ allografts.


Blood ◽  
2000 ◽  
Vol 95 (8) ◽  
pp. 2484-2490 ◽  
Author(s):  
Mario Arpinati ◽  
Cherie L. Green ◽  
Shelly Heimfeld ◽  
Jill E. Heuser ◽  
Claudio Anasetti

Abstract Peripheral blood stem cells (PBSC) obtained from granulocyte-colony stimulating factor (G-CSF)-mobilized donors are increasingly used for allogeneic transplantation. Despite a 10-fold higher dose of transplanted T cells, acute graft-versus-host disease (GVHD) does not develop in higher proportion in recipients of PBSC than in recipients of marrow. T cells from G-CSF-treated experimental animals preferentially produce IL-4 and IL-10, cytokines characteristic of Th2 responses, which are associated with diminished GVHD-inducing ability. We hypothesized that G-CSF-mobilized PBSC contain antigen-presenting cells, which prime T-lymphocytes to produce Th2 cytokines. Two distinct lineages of dendritic cells (DC) have been described in humans, DC1 and DC2, according to their ability to induce naive T-cell differentiation to Th1 and Th2 effector cells, respectively. We have used multicolor microfluorometry to enumerate DC1 and DC2 in the peripheral blood of normal donors. G-CSF treatment with 10 to 16 μg/kg per day for 5 days increased peripheral blood DC2 counts from a median of 4.9 × 106/L to 24.8 × 106/L (P = .0009), whereas DC1 counts did not change. Purified DC1, from either untreated or G-CSF treated donors, induced the proliferation of allogeneic naive T cells, but fresh DC2 were poor stimulators. Tumor necrosis factor- (TNF-)-activated DC1 induced allogeneic naive T cells to produce IFN-γ, which is typical of Th1 responses, whereas TNF--activated DC2 induced allogeneic naive T cells to produce IL-4 and IL-10, which are typical of Th2 responses. PBSC transplants contained higher doses of DC2 than marrow transplants (median, 2.4 × 106/kg versus 0.5 × 106/kg) (P = .006), whereas the dose of DC1 was comparable. Thus, it is conceivable that transplantation of G-CSF-stimulated PBSC does not result in overwhelming acute GVHD because the graft contains predominantly Th2-inducing DC. Adoptive transfer of purified DC2 may be exploited to induce immune deviation after transplantation of hematopoietic stem cells or organ allografts.


1992 ◽  
Vol 176 (5) ◽  
pp. 1431-1437 ◽  
Author(s):  
M Croft ◽  
D D Duncan ◽  
S L Swain

Because of the low frequency of T cells for any particular soluble protein antigen in unprimed animals, the requirements for naive T cell responses in specific antigens have not been clearly delineated and they have been difficult to study in vitro. We have taken advantage of mice transgenic for the V beta 3/V alpha 11 T cell receptor (TCR), which can recognize a peptide of cytochrome c presented by IEk. 85-90% of CD4+ T cells in these mice express the transgenic TCR, and we show that almost all such V beta 3/V alpha 11 receptor-positive cells have a phenotype characteristic of naive T cells, including expression of high levels of CD45RB, high levels of L-selectin (Mel-14), low levels of CD44 (Pgp-1), and secretion of interleukin 2 (IL-2) as the major cytokine. Naive T cells, separated on the basis of CD45RB high expression, gave vigorous responses (proliferation and IL-2 secretion) to peptide antigen presented in vitro by a mixed antigen-presenting cell population. At least 50% of the T cell population appeared to respond, as assessed by blast transformation, entry into G1, and expression of increased levels of CD44 by 24 h. Significant contributions to the response by contaminating memory CD4+ cells were ruled out by demonstrating that the majority of the CD45RB low, L-selectin low, CD44 high cells did not express the V beta 3/V alpha 11 TCR and responded poorly to antigen. We find that proliferation and IL-2 secretion of the naive CD4 cells is minimal when resting B cells present peptide antigen, and that both splenic and bone marrow-derived macrophages are weak stimulators. Naive T cells did respond well to high numbers of activated B cells. However, dendritic cells were the most potent stimulators of proliferation and IL-2 secretion at low cell numbers, and were far superior inducers of IL-2 at higher numbers. These studies establish that naive CD4 T cells can respond vigorously to soluble antigen and indicate that maximal stimulation can be achieved by presentation of antigen on dendritic cells. This model should prove very useful in further investigations of activation requirements and functional characteristics of naive helper T cells.


Immunobiology ◽  
2018 ◽  
Vol 223 (3) ◽  
pp. 294-299 ◽  
Author(s):  
Pauline C. Ledur ◽  
Juliana S.M. Tondolo ◽  
Francielli P.K. Jesus ◽  
Camila M. Verdi ◽  
Érico S. Loreto ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (1) ◽  
pp. 216-223 ◽  
Author(s):  
Elodie Segura ◽  
Carole Nicco ◽  
Bérangère Lombard ◽  
Philippe Véron ◽  
Graça Raposo ◽  
...  

Exosomes are secreted vesicles formed in late endocytic compartments. Immature dendritic cells (DCs) secrete exosomes, which transfer functional major histocompatibility complex (MHC)–peptide complexes to other DCs. Since immature and mature DCs induce different functional T-cell responses (ie, tolerance versus priming), we asked whether DC maturation also influenced the priming abilities of their exosomes. We show that exosomes secreted by lipopolysaccharide (LPS)–treated mature DCs are 50- to 100-fold more potent to induce antigen-specific T-cell activation in vitro than exosomes from immature DCs. In vitro, exosomes from mature DCs transfer to B lymphocytes the ability to prime naive T cells. In vivo, only mature exosomes trigger effector T-cell responses, leading to fast skin graft rejection. Proteomic and biochemical analyses revealed that mature exosomes are enriched in MHC class II, B7.2, intercellular adhesion molecule 1 (ICAM-1), and bear little milk-fat globule–epidermal growth factor–factor VIII (MFG-E8) as compared with immature exosomes. Functional analysis using DC-derived exosomes from knock-out mice showed that MHC class II and ICAM-1 are required for mature exosomes to prime naive T cells, whereas B7.2 and MFG-E8 are dispensable. Therefore, changes in protein composition and priming abilities of exosomes reflect the maturation signals received by DCs.


Sign in / Sign up

Export Citation Format

Share Document