scholarly journals To the Editor Murine gammaherpesvirus 68 (MHV-68) escapes from NK-cell-mediated immune surveillance by a CEACAM1-mediated immune evasion mechanism

2014 ◽  
Vol 44 (8) ◽  
pp. 2521-2522 ◽  
Author(s):  
Heiko Adler ◽  
Beatrix Steer ◽  
Eric Juskewitz ◽  
Robert Kammerer
2006 ◽  
Vol 80 (18) ◽  
pp. 9159-9170 ◽  
Author(s):  
Shinichiro Fuse ◽  
Joshua J. Obar ◽  
Sarah Bellfy ◽  
Erica K. Leung ◽  
Weijun Zhang ◽  
...  

ABSTRACT The interactions between CD80 and CD86 on antigen-presenting cells and CD28 on T cells serve as an important costimulatory signal in the activation of T cells. Although the simplistic two-signal hypothesis has been challenged in recent years by the identification of different costimulators, this classical pathway has been shown to significantly impact antiviral humoral and cellular immune responses. How the CD80/CD86-CD28 pathway affects the control of chronic or latent infections has been less well characterized. In this study, we investigated its role in antiviral immune responses against murine gammaherpesvirus 68 (MHV-68) and immune surveillance using CD80/CD86−/− mice. In the absence of CD80/CD86, primary antiviral CD8+ T-cell responses and the induction of neutralizing antibodies were severely impaired. During long-term immune surveillance, the virus-specific CD8+ T cells were impaired in IFN-γ production and secondary expansion and exhibited an altered phenotype. Surprisingly, a low level of viral reactivation in the lung was observed, and this effect was independent of CD28 and CTLA-4. Thus, CD80 and CD86, signaling through CD28 and possibly another unidentified receptor, are required for optimal immune surveillance and antiviral immune responses to murine gammaherpesvirus.


2018 ◽  
Vol 49 (2) ◽  
pp. 351-352
Author(s):  
Tomoyoshi Yamano ◽  
Madlen Steinert ◽  
Beatrix Steer ◽  
Ludger Klein ◽  
Wolfgang Hammerschmidt ◽  
...  

2004 ◽  
Vol 78 (13) ◽  
pp. 6836-6845 ◽  
Author(s):  
James Scott McClellan ◽  
Scott A. Tibbetts ◽  
Shivaprakash Gangappa ◽  
Kelly A. Brett ◽  
Herbert W. Virgin

ABSTRACT We have previously demonstrated that it is possible to effectively vaccinate against long-term murine gammaherpesvirus 68 (γHV68) latency by using a reactivation-deficient virus as a vaccine (S. A. Tibbetts, J. S. McClellan, S. Gangappa, S. H. Speck, and H. W. Virgin IV, J. Virol. 77:2522-2529, 2003). Immune antibody was capable of recapitulating aspects of this vaccination. This led us to determine whether antibody is required for vaccination against latency. Using mice lacking antigen-specific antibody responses, we demonstrate here that antibody and B cells are not required for vaccination against latency. We also show that surveillance of latent infection in normal animals depends on CD4 and CD8 T cells, suggesting that T cells might be capable of preventing the establishment of latency. In the absence of an antibody response, CD4 T cells but not CD8 T cells are required for effective vaccination against latency in peritoneal cells, while either CD4 or CD8 T cells can prevent the establishment of splenic latency. Therefore, CD4 T cells play a critical role in immune surveillance of gammaherpesvirus latency and can mediate vaccination against latency in the absence of antibody responses.


2006 ◽  
Vol 80 (1) ◽  
pp. 192-200 ◽  
Author(s):  
Ashley L. Steed ◽  
Erik S. Barton ◽  
Scott A. Tibbetts ◽  
Daniel L. Popkin ◽  
Mary L. Lutzke ◽  
...  

ABSTRACT Establishment of latent infection and reactivation from latency are critical aspects of herpesvirus infection and pathogenesis. Interfering with either of these steps in the herpesvirus life cycle may offer a novel strategy for controlling herpesvirus infection and associated disease pathogenesis. Prior studies show that mice deficient in gamma interferon (IFN-γ) or the IFN-γ receptor have elevated numbers of cells reactivating from murine gammaherpesvirus 68 (γHV68) latency, produce infectious virus after the establishment of latency, and develop large-vessel vasculitis. Here, we demonstrate that IFN-γ is a powerful inhibitor of reactivation of γHV68 from latency in tissue culture. In vivo, IFN-γ controls viral gene expression during latency. Importantly, depletion of IFN-γ in latently infected mice results in an increased frequency of cells reactivating virus. This demonstrates that IFN-γ is important for immune surveillance that limits reactivation of γHV68 from latency.


Autoimmunity ◽  
2013 ◽  
Vol 46 (6) ◽  
pp. 399-408 ◽  
Author(s):  
Vinita S. Chauhan ◽  
Daniel A. Nelson ◽  
Ian Marriott ◽  
Kenneth L. Bost

2010 ◽  
Vol 84 (6) ◽  
pp. 2881-2892 ◽  
Author(s):  
Michael L. Freeman ◽  
Kathleen G. Lanzer ◽  
Tres Cookenham ◽  
Bjoern Peters ◽  
John Sidney ◽  
...  

ABSTRACT Murine gammaherpesvirus 68 (γHV68) provides an important experimental model for understanding mechanisms of immune control of the latent human gammaherpesviruses. Antiviral CD8 T cells play a key role throughout three separate phases of the infection: clearance of lytic virus, control of the latency amplification stage, and prevention of reactivation of latently infected cells. Previous analyses have shown that T-cell responses to two well-characterized epitopes derived from ORF6 and ORF61 progress with distinct kinetics. ORF6487-specific cells predominate early in infection and then decline rapidly, whereas ORF61524-specific cells continue to expand through early latency, due to sustained epitope expression. However, the paucity of identified epitopes to this virus has limited our understanding of the overall complexities of CD8 T-cell immune control throughout infection. Here we screened 1,383 predicted H-2b-restricted peptides and identified 33 responses, of which 21 have not previously been reported. Kinetic analysis revealed a spectrum of T-cell responses based on the rapidity of their decline after the peak acute response that generally corresponded to the expression patterns of the two previously characterized epitopes. The slowly declining responses that were maintained during latency amplification proliferated more rapidly and underwent maturation of functional avidity over time. Furthermore, the kinetics of decline was accelerated following infection with a latency-null mutant virus. Overall, the data show that γHV68 infection elicits a highly heterogeneous CD8 T-cell response that segregates into two distinctive kinetic patterns controlled by differential epitope expression during the lytic and latency amplification stages of infection.


2003 ◽  
Vol 77 (15) ◽  
pp. 8588-8592 ◽  
Author(s):  
Louise M. C. Webb ◽  
Ian Clark-Lewis ◽  
Antonio Alcami

ABSTRACT Viruses encode proteins that disrupt chemokine responses. The murine gammaherpesvirus 68 gene M3 encodes a chemokine binding protein (vCKBP-3) which has no sequence similarity to chemokine receptors but inhibits chemokine receptor binding and activity. We have used a panel of CXCL8 analogs to identify the structural requirements for CXCL8 to bind to vCKBP-3 in a scintillation proximity assay. Our data suggest that vCKBP-3 acts by mimicking the binding of chemokine receptors to CXCL8.


Sign in / Sign up

Export Citation Format

Share Document