scholarly journals A Method for Analyzing Fatty Acids in Cattle Hair, with Special Emphasis on Lauric Acid and Myristic Acid

2019 ◽  
Vol 121 (11) ◽  
pp. 1900143
Author(s):  
Ramona Möller ◽  
Gerd Nürnberg ◽  
Elke Albrecht ◽  
Wolfgang Ruth ◽  
Gudrun A. Brockmann ◽  
...  
Author(s):  
Bernita Silaban

Background: "Siasia" is a seaworm species in the phylum that includes Sipuncula Sipunculidea class. This animal has been consumed for generations by coastal communities Nusalaut Island, central mollucas but not yet universally known. Until now there has been obtained gisi complete composition. This study aimed to identify the composition of fatty acids contained in vain fresh seaworms. Methods: Seaworms vain taken from coastal waters of Negeri Titawaai and Nalahia Nusalaut Island, Central Moluccas in March 2014. The parameters analyzed include methods is sokhlet fat content and fatty acid by GC method. Results: The results showed fresh siasia fat content 1.12% of coastal waters Titawaai while 1.91% of coastal waters Nalahia. Fatty acids seaworms were identified from coastal waters Titawai  is  kaparat acid (C10: 0), lauric acid (C12: 0), myristic acid (C14: 0), palmitoleic acid (C16: 1), stearic acid (C18: 0), linolenic acid (C18: 3) acid and eicosapentaenoic (C20: 5) while the fatty acids of  seaworm vain of coastal waters Nalahia include is lauric acid (C12: 0), myristic acid (C14: 0), palmitoleic acid ( C16: 1), stearic acid (C18: 0) and eicosapentaenoic acid (C20: 3). Conclusion: The fat content of fresh siasia sea worms is 1.12% from the waters of Titawaai beach, while 1.91% of the waters of the coast of Nalahia.


Analyses, by recent and improved methods, of the mixed fatty acids from various seed fats are now available in a number of different cases, and show, more definitely than hitherto, that the seed fats of members of the same botanical group frequency possess strongly marked specific resemblances. It has been recognised, of course, for a considerable time that seed fats from plants belonging to the same or nearly allied botanical orders often contain similar, and to a certain extent specific, mixtures of fatty acids. Thus, the fats from fruits of the Palmæ are marked by the presence of relatively large quantities of lauric acid, whilst myristic acid is prominent in those of the Myristiceæ , and erucic acid in seeds of the Cruciferæ ,


2015 ◽  
Vol 9 (7) ◽  
pp. 93 ◽  
Author(s):  
A Suryanto ◽  
Suprapto Suprapto ◽  
Mahfud Mahfud

Biofuels including biodiesel, an alternative fuel, is renewable, environmentally friendly, non-toxic and lowemission energy. The raw material used in this work was coconut oil, which contained saturated fatty acids about90% with medium chain (C8-C12), especially lauric acid and myristic acid. Reaction was conducted in batchreactor assisted by microwave. The purpose of this research was to study the effect of power and NaOH catalystin transesterification enhanced by microwave and to obtain a biofuels (biodiesel and biokerosene) derived fromcoconut oil. The reaction was performed by mixing oil and methanol with mole ratio of 1:6, catalystconcentration of 1% w/w with setting electrical power at 100, 264, 400, 600 and 800 W. The reaction time wasconditioned at of 2.5, 5, 7.5, 10 and 15 min. The results showed that microwave could accelerate thetransesterification process to produce biodiesel using NaOH catalyst. The highest yield of biodiesel was 97.76 %,or 99.05 % conversion at 5 min reaction, meanwhile biokerosene was 48% after distillation.


Author(s):  
Bernita Br Silaban

Background: "Siasia" is a seaworm species in the phylum that includes Sipuncula Sipunculidea class. This animal has been consumed for generations by coastal communities Nusalaut Island, central mollucas but not yet universally known. Until now there has been obtained gisi complete composition. This study aimed to identify the composition of fatty acids contained in vain fresh seaworms. Method: Seaworms vain taken from coastal waters of Negeri Titawaai and Nalahia Nusalaut Island, Central Moluccas in March 2014. The parameters analyzed include methods is sokhlet fat content and fatty acid by GC method. Result: The results showed fresh siasia fat content 1.12% of coastal waters Titawaai while 1.91% of coastal waters Nalahia. Fatty acids seaworms were identified from coastal waters Titawai  is  kaparat acid (C10: 0), lauric acid (C12: 0), myristic acid (C14: 0), palmitoleic acid (C16: 1), stearic acid (C18 : 0), linolenic acid (C18: 3) acid and eicosapentaenoic (C20: 5) while the fatty acids of  seaworm vain of coastal waters Nalahia include is lauric acid (C12: 0), myristic acid (C14: 0), palmitoleic acid ( C16: 1), stearic acid (C18: 0) and eicosapentaenoic acid (C20: 3). Conclusion: Siasia fatty acid from Titawai waters of the identified seven seas of each capsic acid (C10: 0), lauric acid (C12: 0), myristic acid (C14: 0), palmitoleic acid (C16: 1) , Stearic acid (C18: 0), linolenic acid (C18: 3) and eicosapentaenoic acid (C20: 5) whereas Siasia fatty acids from Nalahia's coastal waters were identified as five lauric acid (C12: 0), myristic acid (C14: 0), palmitoleic acid (C16: 1), stearic acid (C18: 0) and eicosapentaenoic acid (C20: 3).


2004 ◽  
Vol 72 (12) ◽  
pp. 6836-6845 ◽  
Author(s):  
Shwu-Jen Liaw ◽  
Hsin-Chih Lai ◽  
Won-Bo Wang

ABSTRACT After sensing external signals, Proteus mirabilis undergoes a multicellular behavior called swarming which is coordinately regulated with the expression of virulence factors. Here we report that exogenously added fatty acids could act as signals to regulate swarming in P. mirabilis. Specifically, while oleic acid enhanced swarming, some saturated fatty acids, such as lauric acid, myristic acid, palmitic acid, and stearic acid, inhibited swarming. We also found that expression of hemolysin, which has been shown to be coordinately regulated with swarming, was also inhibited by the above saturated fatty acids. Previously we identified a gene, rsbA, which may encode a histidine-containing phosphotransmitter of the bacterial two-component signaling system and act as a repressor of swarming and virulence factor expression in P. mirabilis. We found that while myristic acid, lauric acid, and palmitic acid exerted their inhibitory effect on swarming and hemolysin expression through an RsbA-dependent pathway, the inhibition by stearic acid was mediated through an RsbA-independent pathway. Biofilm formation and extracellular polysaccharide (EPS) production play an important role in P. mirabilis infection. We found that RsbA may act as a positive regulator of biofilm formation and EPS production. Myristic acid was found to slightly stimulate biofilm formation and EPS production, and this stimulation was mediated through an RsbA-dependent pathway. Together, these data suggest that fatty acids may act as environmental cues to regulate swarming and virulence in P. mirabilis and that RsbA may play an important role in this process.


2014 ◽  
pp. 67-73
Author(s):  
Ágnes Süli ◽  
Béla Béri ◽  
János Csapó ◽  
Éva Vargáné Visi

The efforts to modify the fatty acid composition of milk have intensified with health conscious nutrition coming to the forefront.This experiment of ours was designed to investigate to what extent the natural-based feed additives, such as oilseeds, can influence the fatty acid composition of cow’s milk.Further information was gained about feeding of oilseeds in specific amounts to be fitted into the technology of a large-scale dairy farm in practice. The feed supplements were whole, untreated rapeseed and whole, untreated linseed, as part of a total mixed ration. In case of saturated fatty acids when supplementing with whole rapeseed the most significant change was observable in the concentration of the caprylic acid, capric acid, undecylic acid, lauric acid, myristic acid, stearic acid. In case of unsaturated fatty acids the quantity of oleic acid enhanced considerably. When observating the feeding with whole linseed the concentration of many saturated fatty acids lowered (caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid). The quantity of some unsaturated fatty acids was showing a distinct rise after feeding with linseed, this way the oleic acid, α-linolenic acid, conjugated linoleic acid, eicosadienoic acid. The aim of the study was to produce food which meets the changed demands of customers, as well.


1968 ◽  
Vol 35 (3) ◽  
pp. 361-370 ◽  
Author(s):  
W. Steele ◽  
J. H. Moore

SummaryThe effects of the isocaloric replacement of part of the dietary concentrate mixture by 5% lauric acid (99% pure) or by 10% of myristic (95% pure), palmitic (96% pure) or stearic (94% pure) on the yield and composition of milk fat was investigated in 2 feeding experiments with a total of 10 cows in mid-lactation. The concentrate mixtures were given with a high-roughage diet that supplied 9·1 or 7·7 kg hay/day in expts 1 and 2, respectively.In expt 1 the inclusion of myristic acid in the diet decreased the yields of milk and solids-not-fat (SNF), but increased the percentage of fat in the milk without altering the fat yield. When stearic or palmitic acid was included in the diet there was an increase in milk fat yield; palmitic acid caused the greater increase. In expt 2 the inclusion of lauric acid in the diet did not appear to affect the yields of milk or SNF but it caused large reductions in the percentage of fat in the milk and in the yield of fat.In expt 1 the inclusion of myristic acid increased the yields and percentages of 14:0, 14:1 and 16:1 in the milk fat and decreased the yields and percentages of the short-chain fatty acids (4:0–8:0), 16:0, 18:0 and 18:1. When palmitic acid was included in the diet there were increases in the yields and percentages of 16:0 and 16:1 in the milk fat and decreases in the yields and percentages of 10:0, 12:0, 14:0, 18:0 and 18:1. The inclusion of stearic acid in the diet increased the yields and percentages of 18:0 and 18:1 in the milk fat and decreased the yields and percentages of 12:0 and 16:0. In expt 2 the inclusion of lauric acid in the diet increased the yield and percentage of 12:0, and in 1 cow the content of 14:0 in the milk fat; there were reductions in the yields and percentages of all the other fatty acids in the milk fat. There was no evidence of any marked elongation of the carbon chains of 12:0 and 14:0 in the mammary gland to form 16:0 or 18:0.In expt 1 the incorporation of myristic acid in the diet decreased the concentration of total steam-volatile fatty acids in rumen liquor. The inclusion of either myristic, palmitic or stearic acid in the diet had little effect on the relative proportions of the individual volatile acids in the rumen liquor. In expt 2 the addition of lauric acid to the diet reduced the acetic acid:propionic acid ratio in the rumen liquor.


Author(s):  
Tatiana Voblikova ◽  
Anatoly Permyakov ◽  
Antonina Rostova ◽  
Galina Masyutina ◽  
Anastasia Eliseeva

The aim of this research was to study the fatty acid composition of Camembert cheese fat phase. The object of the research was the sheep’s milk Camembert soft cheese. The Camembert soft cheese was made from sheep’s milk pasteurized at 63∘C for 30 minutes before production, using cultures Penicillium camemberti, Geotrichum candidum, as well as Lactococcus lactis, Lactococcus cremoris, Lactococcus diacetylactis, Leuconostoc mesenteroides ssp. cremoris. The study of the cheese fatty acid composition during maturation was carried out using the gas chromatography method in accordance with the state industry standard of the Russian Federation 32915-2014 ”Milk and dairy products. The determination of fatty acid composition of the fat phase by gas chromatography”. The fatty acids profile in the process of cheese maturation changed significantly. There was an increase in the short chain fatty acids concentration: oil (C4:0) kapron (C6:0), capryl (C8:0). A change in the lauric acid content (C12: 0) and myristic acid (C14: 0) showed a similar trend but with less dynamics. On the 14th day of maturation, the concentration of lauric acid (C12:0) increased by 30%, myristic acid (C14:0) – by 13%. At the beginning of the maturation period, the C18:1n9t isomer consisted about 70% of the total fatty acid trans-isomers. During maturation, the concentration of C18:1n9t decreased by 98%. It was found that, regardless of the maturation period, fatty acids C10: 0, C14: 0, C16: 0, C18: 0, C18: 1 t11 and C18: 1c9 consisted about 73% of the total fatty acids. There was a decrease in the concentration of w-6-polyunsaturated fatty acids with a simultaneous increase in the concentration of w-3 polyunsaturated fatty acids. The results can serve as a basis for comparative analysis development tools and strategies aimed at improving the nutritional characteristics of sheep’s milk cheese.


Sign in / Sign up

Export Citation Format

Share Document