Process design and optimization of state-of-the-art carbon capture technologies

2013 ◽  
Vol 33 (3) ◽  
pp. 993-999 ◽  
Author(s):  
Zhijun Zhou ◽  
Zhuo You ◽  
Zhihua Wang ◽  
Xin Hu ◽  
Junhu Zhou ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 148
Author(s):  
Peter Glavič ◽  
Zorka Novak Pintarič ◽  
Miloš Bogataj

This paper describes the state of the art and future opportunities for process design and sustainable development. In the Introduction, the main global megatrends and the European Union’s response to two of them, the European Green Deal, are presented. The organization of professionals in the field, their conferences, and their publications support the two topics. A brief analysis of the published documents in the two most popular databases shows that the environmental dimension predominates, followed by the economic one, while the social pillar of sustainable development is undervalued. The main design tools for sustainability are described. As an important practical case, the European chemical and process industries are analyzed, and their achievements in sustainable development are highlighted; in particular, their strategies are presented in more detail. The conclusions cover the most urgent future development areas of (i) process industries and carbon capture with utilization or storage; (ii) process analysis, simulation, synthesis, and optimization tools, and (iii) zero waste, circular economy, and resource efficiency. While these developments are essential, more profound changes will be needed in the coming decades, such as shifting away from growth with changes in habits, lifestyles, and business models. Lifelong education for sustainable development will play a very important role in the growth of democracy and happiness instead of consumerism and neoliberalism.



2021 ◽  
Vol 1043 (3) ◽  
pp. 032037
Author(s):  
J Liu ◽  
Z P Guo ◽  
Q Yuan ◽  
X X He ◽  
S j Miao


Author(s):  
V. Gall ◽  
E. Rütten ◽  
H. P. Karbstein

AbstractHigh-pressure homogenization is the state of the art to produce high-quality emulsions with droplet sizes in the submicron range. In simultaneous homogenization and mixing (SHM), an additional mixing stream is inserted into a modified homogenization nozzle in order to create synergies between the unit operation homogenization and mixing. In this work, the influence of the mixing stream on cavitation patterns after a cylindrical orifice is investigated. Shadow-graphic images of the cavitation patterns were taken using a high-speed camera and an optically accessible mixing chamber. Results show that adding the mixing stream can contribute to coalescence of cavitation bubbles. Choked cavitation was observed at higher cavitation numbers σ with increasing mixing stream. The influence of the mixing stream became more significant at a higher orifice to outlet ratio, where a hydraulic flip was also observed at higher σ. The decrease of cavitation intensity with increasing back-pressure was found to be identical with conventional high-pressure homogenization. In the future, the results can be taken into account in the SHM process design to improve the efficiency of droplet break-up by preventing cavitation or at least hydraulic flip.



2021 ◽  
Vol 228 ◽  
pp. 113638
Author(s):  
Piyush Verma ◽  
Zhiwei Yang ◽  
Scott Hume ◽  
Andrew Maxson ◽  
Richard L. Axelbaum








Sign in / Sign up

Export Citation Format

Share Document