The Effect of Soil Organic Matter, Electrical Conductivity and Acidity on the Soil's Carbon Sequestration Ability Via Two Species of Tamarisk ( Tamarix Spp.)

2019 ◽  
Vol 38 (6) ◽  
pp. 13230 ◽  
Author(s):  
Mahbobeh Iranmanesh ◽  
Hossein Sadeghi
2018 ◽  
Vol 29 (3) ◽  
pp. 485-494 ◽  
Author(s):  
Alessandro Piccolo ◽  
Riccardo Spaccini ◽  
Vincenza Cozzolino ◽  
Assunta Nuzzo ◽  
Marios Drosos ◽  
...  

2019 ◽  
Vol 99 (2) ◽  
pp. 195-207 ◽  
Author(s):  
Yu Tan ◽  
Wanqin Yang ◽  
Xiangyin Ni ◽  
Bo Tan ◽  
Kai Yue ◽  
...  

The formation of soil organic matter via humification of plant litter is important for long-term carbon sequestration in forests; however, whether soil fauna affects litter humification is unclear. In this study, we quantified the effects of soil fauna on the optical properties (i.e., ΔlogK and E4/E6) of the alkaline-extracted humic acid-like solutions of four foliar litters by removing soil fauna via litterbags with different mesh sizes in two subtropical evergreen broad-leaved forests. Litterbags were collected at the leaf falling, budding, expanding, maturation, and senescence stages from November 2013 to October 2015 to assess whether the effects of soil fauna on litter humification vary in different plant phenology periods. The results showed that soil fauna significantly reduced the ΔlogK and E4/E6 values in the leaf expanding stage of oak litter and in the leaf falling stage of camphor and fir litters. The richness index of soil fauna explained 21%, 55%, 19%, and 45% of the variations in the E4/E6 values for oak, fir, camphor, and pine litters, respectively. The effects of litter water content on these optical properties were greater than that of temperature. These results indicated that soil fauna plays a key role in litter humification in the leaf expanding and falling stages and are potentially involved in soil carbon sequestration in these subtropical forests.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2553
Author(s):  
Magdalena Banach-Szott ◽  
Andrzej Dziamski ◽  
Maciej Markiewicz

The still-advancing soil degradation and the related losses of soil organic carbon stocks due to the limited inflow of organic residues in agro-ecosystems encourage more and more soil protection. Establishing meadow ecosystems is one of the key methods of agricultural land use preventing losses of organic carbon in soils. Based on the research on the properties of humic acids, it is possible to determine the advancement of the processes of transformation and decomposition of soil organic matter. The obtained results may allow for the development of a soil protection strategy and more effective sequestration of organic carbon. Therefore, the aim of the research was to determine the properties of humic acids defining the quality of organic matter of meadow soils irrigated for 150 years with the slope-and-flooding system. The research was performed based on the soils (Albic Brunic Arenosol) sampled from Europe’s unique complex of permanent irrigated grasslands (the same irrigation management for 150 years), applying the slope-and-flooding system: the Czerskie Meadows. The soil samples were assayed for the content of total organic carbon (TOC) and the particle size distribution. HAs were extracted with the Schnitzer method and analysed for the elemental composition, spectrometric parameters in the UV-VIS (ultraviolet-visible) range, hydrophilic and hydrophobic properties and the infrared spectra. The research results showed that the HAs properties depend on the depth and the distance from the irrigation ditch. The HAs of soils sampled from the depth of 0–10 cm were identified with a lower “degree of maturity” as compared with the HAs of soils sampled from the depth of 20–30 cm, reflected by the values of atomic ratios (H/C, O/C, O/H), absorbance coefficients, and the FT-IR (Fourier transform infrared) spectra. The mean values of the H/C ratio in the HAs molecules of soils sampled from the depth of 20–30 cm were lower by 8.2% than those from the depth of 0–10 cm. The mean values of the absorbance coefficient A4/6 in the HAs molecules of soils sampled from the depth of 20–30 cm were lower by 9.6% than in the HAs molecules of soils sampled from the depth of 0–10 cm. The HAs molecules of the soils sampled 25 m from the irrigation ditch were identified with a higher degree of humification, as compared with the HAs of the soils sampled 5 m from the irrigation ditch. The results identified that humic acids produced in the many-year irrigated sandy soils were identified with a high degree of humification, which proves the relative stability of the soil’s organic matter. It confirms the importance of meadow soils for the carbon sequestration process. It should also be emphasized that the research area is interesting, although hardly described in terms of organic matter properties. Further and more detailed applicable research is planned, e.g., monitoring of total organic carbon content and comparing the properties of irrigated and non-irrigated meadow soils. Continuity of research is necessary to assess the direction of the soil organic matter transformation in such a unique ecosystem. The obtained results may allow for the development of, inter alia, models of agricultural practices that increase carbon sequestration in soils. In the long term, this will allow for greater environmental benefits and, thus, also increased financial benefits.


Sign in / Sign up

Export Citation Format

Share Document