scholarly journals Seismic retrofit of low-rise steel buildings in Canada using rocking steel braced frames

2017 ◽  
Vol 47 (2) ◽  
pp. 333-355 ◽  
Author(s):  
Paul Mottier ◽  
Robert Tremblay ◽  
Colin Rogers
2021 ◽  
Vol 243 ◽  
pp. 112555
Author(s):  
Mohamed Noureldin ◽  
Shabir Ahmed Memon ◽  
Masom Gharagoz ◽  
Jinkoo Kim

2014 ◽  
Vol 30 (4) ◽  
pp. 1683-1709 ◽  
Author(s):  
Edgar Tapia-Hernández ◽  
Arturo Tena-Colunga

In order to help improve the seismic design of regular steel buildings structured with ductile moment-resisting concentrically braced frames (MRCBFs) using the general design methodology of Mexico's Federal District Code (MFDC-04), suitable design parameters were first assessed using the results of pushover analyses of 13 regular MRCBFs. In order to insure collapse mechanisms consistent with the assumptions implicit in a code-based design (strong-column/weak-beam/weaker-brace), it is proposed to relate the minimum strength ratio for the resisting columns of the moment frames and the bracing system. Improved equations are proposed for a more realistic assessment of ductility and overstrength factors. In a second stage, the effectiveness of the improved methodology was assessed with the design of six regular steel buildings with MRCBFs. Buildings were evaluated by performing both pushover and nonlinear time-history analyses under ten selected artificial ground motions related to the corresponding design spectrum.


2013 ◽  
Vol 29 (1_suppl) ◽  
pp. 219-243 ◽  
Author(s):  
Taichiro Okazaki ◽  
Dimitrios G. Lignos ◽  
Mitsumasa Midorikawa ◽  
James M. Ricles ◽  
Jay Love

A joint U.S.–Japan reconnaissance team examined the damage to steel building structures caused by the 2011 Tohoku-oki earthquake. In the city of Sendai, where the peak horizontal ground acceleration exceeded 1 g, the majority of steel buildings performed well. Buildings that used older cladding systems for external finish sustained damage to their claddings even if their structural performance was excellent. Damage to a few braced frames offer insight into the seismic design of bracing connections. In areas attacked by the violent tsunami, many steel buildings stood upright after the tsunami subsided, although these buildings lost much of their external and internal finishes along with their contents. These steel buildings did not provide safe shelter for tsunami evacuation when the building submerged under the tsunami wave. A number of buildings suffered foundation failure, which was likely caused by scouring or liquefaction or a combination of multiple effects.


1996 ◽  
Vol 23 (3) ◽  
pp. 727-756 ◽  
Author(s):  
Robert Tremblay ◽  
Andre Filiatrault ◽  
Michel Bruneau ◽  
Masayoshi Nakashima ◽  
Helmut G. L. Prion ◽  
...  

Past and current seismic design provisions for steel structures in Japan are presented and compared with Canadian requirements. The performance of steel framed structures during the January 17, 1995, Hyogo-ken Nanbu earthquake is described. Numerous failures and examples of inadequate behaviour could be observed in buildings of various ages, sizes, and heights, and braced with different structural systems. In moment resisting frames, the damage included failures of beams, columns, beam-to-column connections, and column bases. Fracture of bracing members or their connections was found in concentrically braced frames. The adequacy of the current Canadian seismic design provisions is examined in view of the observations made. Key words: earthquake, seismic design, steel structures.


2017 ◽  
Vol 11 (1) ◽  
pp. 475-484 ◽  
Author(s):  
Esra Mete Güneyisi ◽  
Ayşegül Gültekin

Off-center or gate braced frames are a special configuration of inverted V bracing with non-straight diagonal members that are made of two elements connected to the corner of the frame by another member. This arrangement is characterized by an eccentricity of the intercepted bracing as respect to the straightness of the theoretical working length of the diagonal members in chevron configuration. These types of braced frames permit larger openings with significant advantages in terms of architectural functionality. The seismic performance of gate braced frames differs from that of traditional chevron braced frames, because of the out-of-straightness eccentricity of bracing members and the position of the corner-to-brace connecting element. Therefore, in this paper, a numerical parametric study based on both nonlinear static pushover and dynamic time-history analyses is presented and discussed in order to examine the influence of brace-to-brace detailing on seismic response of this structural typology. The results showed that the initial stiffness, the strength and the interstorey drift demand are very sensitive to the out-of-straightness eccentricity of bracing.


2019 ◽  
Vol 9 (1) ◽  
pp. 115-120
Author(s):  
Mahmoud Sadeghpour

Abstract In knee brace and shear panel systems, unlike eccentric braced frames, energy absorption is achieved through plastic deformation when sub-members yield by shear forces or bending moments caused by bracing members during severe earthquakes. Several studies have been conducted on the behavior of these two systems which resulted in design methods to obtain the best structural performance. The present study attempted to design frames using these methods, and then to compare them in terms of technical and economic factors. In this regard, to obtain a pattern of the frames behavior, a 3-span 5-storey frame was modeled for three different types of brace system (coaxial, knee and shear panel) using ANSYS software. After performing pushover nonlinear static analysis, behavior coefficients were determined and the force-lateral displacement curves of the systems were compared. In the next step, 3-span 5- 8- and 12-storey frames were analyzed and designed using ETABS software and were compared in terms of the parameters such as relative lateral displacement, normal period of system, structural weight, and shear force into foundation. The results indicate that using the above-mentioned systems, structure will exhibit more ductility which leads to reduced design base shear. The forces applied to main structural members (beams, columns, and braces) are reduced by the use of knee brace and shear panel systems. This will affect the design and sometimes increases or decreases weight of these members.


1989 ◽  
Vol 5 (3) ◽  
pp. 495-511 ◽  
Author(s):  
Michael D. Engelhardt ◽  
Egor P. Popov

Seismic-resistant Eccentrically Braced Frames (EBFs) are becoming a widely used lateral resisting system for steel buildings, with even wider application anticipated as design requirements are put into building code format. This paper addresses a number of EBF design issues, which in the opinion of the authors are inadequately considered either in current practice or in the emerging code provisions. The overall design philosophy for EBFs is reviewed, with specific reference to the concept of “Capacity Design”. Application of capacity design principles assures that yielding will be restricted primarily to the ductile link elements, an important goal of EBF design. Further, through careful choice of frame geometry and link length at the preliminary stages, many potential design difficulties can be avoided. The paper also presents some important observations from experimental work currently underway on EBFs with long, flexural yielding links.


Sign in / Sign up

Export Citation Format

Share Document