Selection of waste thermoplastics for shape stabilized phase change materials using multicriteria techniques

Author(s):  
Çağrı Önder Özdemir ◽  
Aysun Özkan ◽  
Zerrin Günkaya ◽  
Müfide Banar
Author(s):  
J. Martínez-Gómez ◽  
E. Urresta ◽  
D. Gaona ◽  
G. Guerrón

Esta investigación tiene como objetivo seleccionar un material de cambio de fase (PCM) que cumplen mejor la solución del almacenamiento de energía térmica entre 200-400 ° C y reducir el costo de producción. El uso de métodos multicriterios de toma de decisiones (MCMD) para la evaluación fueron proporcionales implementados como COPRAS-G, TOPSIS y VIKOR. La ponderación de los criterios se realizó por el método AHP (proceso analítico jerárquico) y los métodos de entropía. La correlación de los resultados entre los tres métodos de clasificación ha sido desarrollada por el coeficiente de correlación de Spearman. Los resultados ilustran el mejor y la segundo mejor opción para los tres MCDM fueron NaOH y KNO3. Además, tenía valores de correlación de Spearman entre los métodos excede de 0.714.


2020 ◽  
Vol 989 ◽  
pp. 165-171
Author(s):  
A.M. Morzhukhin ◽  
D.S. Testov ◽  
S.V. Morzhukhina

The types of heat accumulation and the types of heat-accumulating materials are considered. It is shown that the most promising as heat-accumulating materials for heating and hot water are the salts hydrates. Based on the conducted factor analysis, a number of criteria are excluded from further consideration, which significantly reduces the list of criteria considered for selecting phase change materials (PCM) and simplifies further work on the selection of the most promising materials. There were selected from over 160 salt hydrates as PCM for the future of composite synthesis for the heating and hot water the Na (CH3COO) •3H2O, Ba (OH)2•8H2O, Mg (NO3)2 •6H2O and Zn (NO3)2•6H2O.


2020 ◽  
Vol 45 (29) ◽  
pp. 14922-14939 ◽  
Author(s):  
Hafsa El Mghari ◽  
Jacques Huot ◽  
Liang Tong ◽  
Jinsheng Xiao

2021 ◽  
pp. 185-185
Author(s):  
Ismail Bozkurt

Solar ponds are systems that store solar energy in salt water as heat energy. In order to store heat energy for a long time in solar pond, the heat insulation should be done well. In this study, the effect of phase change materials (PCMs) was investigated to improve the insulation of the pond and to store the heat energy for a longer time. The melting temperature is a key parameter in the selection of PCMs. The temperature distribution of the solar pond was examined and PCMs with melting temperatures in the range of the pond average temperature ? 10?C were selected.Three different phase change materials were used in the walls of the solar pond for insulation. The temperature and enthalpy changes of the system were calculated numerically for a year. The heat storage ratio of the solar pond was determined by using the obtained enthalpy and solar radiation data. Consequently, the heat storage ratio of the pond with glass-wool is maximum 20.95% in July and minimum 7.92% in January. The heat storage ratio of the solar pond which Paraffin C18, Capric acid and Paraffin 44 are used as PCMs is maximum 32.22%, 34.85% and 47.81% in December, respectively. It is observed that the appropriate selection of PCMs is provided a longer storage time for solar ponds.


Author(s):  
Paul Gregory Felix ◽  
Velavan Rajagopal ◽  
Kannan Kumaresan

Latent heat thermal energy storage heat exchangers store heat energy by virtue of the phase transition that occurs in the thermal storage media. Since phase change materials (PCMs) are utilized as the media, there is a critical necessity for the appropriate selection of the PCM utilized. Since multiple thermo-physical properties and multiple PCMs are required to be evaluated for the selection, there arises a need for multiple criteria decision making (MCDM) algorithms to be adopted for the selection. But owing to the different weight estimation techniques employed and the voluminous quantity of selection algorithms available, there arises a need for a comparative methodology to be adopted. This study was intended to select an optimal PCM for a sustainable steam cooking application coupled with a thermal energy storage system. In this research study, six PCMs were chosen as the alternatives and five thermo-physical properties were chosen as the criteria for the evaluation. 11 different algorithms were augmented with 3 different weight estimation techniques and therefore a total of 33 algorithms were employed in this study. All of the algorithms have chosen Erythritol as the optimal PCM for the application. The outcomes of the MCDM algorithms have been validated through an intricate Pearson’s correlation coefficient study.


2018 ◽  
Vol 96 (7) ◽  
pp. 722-729 ◽  
Author(s):  
John A. Noël ◽  
Samer Kahwaji ◽  
Mary Anne White

Phase change materials (PCMs) offer a promising technology for thermal energy storage, load leveling, and peak shifting applications. A desirable PCM has a melting temperature within the temperature boundaries of its application and a high change in enthalpy on melting. Knowledge of the relationships between these thermodynamic properties and molecular structure would advance informed selection of PCM candidates for a given application. In the present investigation, the relationship between structure (length of alkyl chains) and melting properties has been investigated for isomeric esters, showing that esters containing longer individual alkyl chains have higher melting temperatures and higher enthalpy changes on melting. The melting entropy changes, however, are relatively independent of the alkyl chain distribution.


2020 ◽  
Vol 32 ◽  
pp. 101927
Author(s):  
Anthony Joseph Rawson ◽  
Werner Kraft ◽  
Tina Gläsel ◽  
Florian Kargl

2011 ◽  
Vol 1337 ◽  
Author(s):  
Deepu Roy ◽  
Dirk J. Gravesteijn ◽  
Rob A. M. Wolters

ABSTRACTWe have investigated the interfacial contact properties of the CMOS compatible electrode materials W, TiW, Ta, TaN and TiN to doped-Sb2Te phase change material (PCM). This interface is characterized both in the amorphous and in the crystalline state of the doped-Sb2Te. The electrical nature of the interface is characterized by contact resistance measurements and is expressed in terms of specific interfacial contact resistance (ρC). These measurements are performed on four-terminal Kelvin Resistor test structures. Knowledge of the ρC is useful for selection of the electrode in the integration and optimization of the phase change memory cells.


Sign in / Sign up

Export Citation Format

Share Document