scholarly journals Multiphase flow behavior in deep water drilling: The influence of gas hydrate

2020 ◽  
Vol 8 (4) ◽  
pp. 1386-1403 ◽  
Author(s):  
Jianhong Fu ◽  
Yu Su ◽  
Wei Jiang ◽  
Xingyun Xiang ◽  
Bin Li
Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Yilong Yuan ◽  
Tianfu Xu ◽  
Xin Xin ◽  
Yingli Xia

Gas hydrates are expected to be a potential energy resource with extensive distribution in the permafrost and in deep ocean sediments. The marine gas hydrate drilling explorations at the Eastern Nankai Trough of Japan revealed the variable distribution of hydrate deposits. Gas hydrate reservoirs are composed of alternating beds of sand and clay, with various conditions of permeability, porosity, and hydrate saturation. This study looks into the multiphase flow behaviors of layered methane hydrate reservoirs induced by gas production. Firstly, a history matching model by incorporating the available geological data at the test site of the Eastern Nankai Trough, which considers the layered heterogeneous structure of hydrate saturation, permeability, and porosity simultaneously, was constructed to investigate the production characteristics from layered hydrate reservoirs. Based on the validated model, the effects of the placement of production interval on production performance were investigated. The modeling results indicate that the dissociation zone is strongly affected by the vertical reservoir’s heterogeneous structure and shows a unique dissociation front. The beneficial production interval scheme should consider the reservoir conditions with high permeability and high hydrate saturation. Consequently, the identification of the favorable hydrate deposits is significantly important to realize commercial production in the future.


2020 ◽  
Vol 117 (6) ◽  
pp. 619
Author(s):  
Rui Xu ◽  
Haitao Ling ◽  
Haijun Wang ◽  
Lizhong Chang ◽  
Shengtao Qiu

The transient multiphase flow behavior in a single-strand tundish during ladle change was studied using physical modeling. The water and silicon oil were employed to simulate the liquid steel and slag. The effect of the turbulence inhibitor on the slag entrainment and the steel exposure during ladle change were evaluated and discussed. The effect of the slag carry-over on the water-oil-air flow was also analyzed. For the original tundish, the top oil phase in the impact zone was continuously dragged into the tundish bath and opened during ladle change, forming an emulsification phenomenon. By decreasing the liquid velocities in the upper part of the impact zone, the turbulence inhibitor decreased considerably the amount of entrained slag and the steel exposure during ladle change, thereby eliminating the emulsification phenomenon. Furthermore, the use of the TI-2 effectively lowered the effect of the slag carry-over on the steel cleanliness by controlling the movement of slag droplets. The results from industrial trials indicated that the application of the TI-2 reduced considerably the number of linear inclusions caused by ladle change in hot-rolled strip coils.


Author(s):  
A. K. M. Monayem Mazumder ◽  
Ting Wang ◽  
Jobaidur R. Khan

To help design a mild-gasifier, a reactive multiphase flow computational model has been developed in Part 1 using Eulerian-Eulerian method to investigate the thermal-flow and gasification process inside a conceptual, hybrid entrained-flow and fluidized-bed mild-gasifier. In Part 2, the results of the verifications and the progressive development from simple conditions without particles and reactions to complicated conditions with full reactive multiphase flow are presented. Development of the model starts from simulating single-phase turbulent flow and heat transfer in order to understand the thermal-flow behavior, followed by introducing seven global, homogeneous gasification reactions progressively added one equation at a time. Finally, the particles are introduced, and heterogeneous reactions are added in a granular flow field. The mass-weighted, adiabatic flame temperature is validated through theoretical calculation and the minimum fluidization velocity is found to be close to Ergun’s correlation. Furthermore, the predicted exit species composition is consistent with the equilibrium values.


Author(s):  
Eugenio Turco Neto ◽  
M. A. Rahman ◽  
Syed Imtiaz ◽  
Thiago dos Santos Pereira ◽  
Fernanda Soares de Sousa

The gas hydrates problem has been growing in offshore deep water condition where due to low temperature and high pressure hydrate formation becomes more favorable. Several studies have been done to predict the influence of gas hydrate formation in natural gas flow pipeline. However, the effects of multiphase hydrodynamic properties on hydrate formation are missing in these studies. The use of CFD to simulate gas hydrate formation can overcome this gap. In this study a computational fluid dynamics (CFD) model has been developed for mass, heat and momentum transfer for better understanding natural gas hydrate formation and its migration into the pipelines using ANSYS CFX-14. The problem considered in this study is a three-dimensional multiphase-flow model based on Simon Lo (2003) study, which considered the oil-dominant flow in a pipeline with hydrate formation around water droplets dispersed into the oil phase. The results obtained in this study will be useful in designing a multiphase flow metering and a pump to overcome the pressure drop caused by hydrate formation in multiphase petroleum production.


2018 ◽  
Vol 32 (3) ◽  
pp. 3399-3405 ◽  
Author(s):  
Erlend O. Straume ◽  
Celina Kakitani ◽  
Luis A. Simões Salomão ◽  
Rigoberto E. M. Morales ◽  
Amadeu K. Sum

2021 ◽  
Author(s):  
Soheila Taghavi ◽  
Ismarullizam Mohd Ismail ◽  
Haavard Aakre ◽  
Vidar Mathiesen

Abstract To increase the production and recovery of marginal, mature, and challenging oil reservoirs, developing new inflow control technologies is of great importance. In cases where production of surrounding reservoir fluids such as gas and water can cause negative effects on both the total oil recovery and the amounts of energy required to drain the reservoir, the multiphase flow performances of these technologies are of particular significance. In typical cases, a Long Horizontal Well (LHW) will eventually start producing increasing amounts of these fluids. This will cause the Water Cut (WC) and/or Gas Oil Ratio (GOR) to rise, ultimately forcing the well to be shut down even though there still are considerable amounts of oil left in the reservoir. In earlier cases, Inflow Control Devices (ICD) and Autonomous Inflow Control Devices (AICD) have proven to limit these challenges and increase the total recovery by balancing the influx along the well and delaying the breakthrough of gas and/or water. The Autonomous Inflow Control Valve (AICV) builds on these same principles, and in addition has the ability to autonomously close when breakthrough of unwanted gas and/or water occurs. This will even out the total drawdown in the well, allowing it to continue producing without the WC and/or GOR reaching inacceptable limits. As part of the qualification program of the light-oil AICV, extensive flow performance tests have been carried out in a multiphase flow loop test rig. The tests have been performed under realistic reservoir conditions with respect to variables such as pressure and temperature, with model oil, water, and gas at different WC's and GOR's. Conducting these multiphase experiments has been valuable in the process of establishing the AICV's multiphase flow behavior, and the results are presented and discussed in this paper. Single phase performance and a comparison with a conventional ICD are also presented. The results display that the AICV shows significantly better performance than the ICD, both for single and multiphase flow. A static reservoir modelling method have been used to evaluate the AICV performance in a light-oil reservoir. When compared to a screen-only completion and an ICD completion, the simulation shows that a completion with AICV's will outperform the above-mentioned completions with respect to WC and GOR behavior. A discussion on how this novel AICV can be utilized in marginal, mature, and other challenging reservoirs will be provided in the paper.


Sign in / Sign up

Export Citation Format

Share Document