Measuring streambank erosion due to ground water seepage: correlation to bank pore water pressure, precipitation and stream stage

2007 ◽  
Vol 32 (10) ◽  
pp. 1558-1573 ◽  
Author(s):  
Garey A. Fox ◽  
Glenn V. Wilson ◽  
Andrew Simon ◽  
Eddy J. Langendoen ◽  
Onur Akay ◽  
...  
2020 ◽  
Vol 15 (6) ◽  
pp. 754-764
Author(s):  
Yohsuke Kawamata ◽  
Hiroshi Nakazawa ◽  
◽  

Various studies have examined soil liquefaction and the resultant structure damage. The 1995 Southern Hyogo Prefecture Earthquake, a near-field earthquake, caused significant damage when the ground was liquified due to the rapidly increased pore water pressure in several cycles of major motions. Therefore, the effect of pore water movement during earthquakes has been assumed to be limited, and liquefaction has mainly been evaluated in undrained conditions. Additionally, the ground and building settlement or inclination caused by liquefaction are deemed to result from pore water drainage after earthquakes. Meanwhile, in the 2011 Tohoku Earthquake, off the Pacific Coast, a subduction-zone earthquake, long-duration motions were observed for over 300 s with frequent aftershocks. Long-duration motions with frequent aftershocks are also anticipated in a future Nankai Trough Earthquake. The effect of pore water movement not only after but during an earthquake should be considered in cases where pore water pressure gradually increases in long-duration motion. The movement of pore water during and after an earthquake typically results in simultaneous dissipation and buildup of water pressure, as well as volumetric changes associated with settlement and lateral spreading. Such effects must reasonably be considered in liquefaction evaluation and building damage prediction. This research focuses on pore water seepage into the unsaturated surface layer caused by the movement of pore water. Seepage experiments were performed based on parameters such as height of test ground, ground surface permeability, and liquefaction duration. In the tests, water pressure when the saturated ground below the groundwater level is fully liquified was applied to the bottom of the specimen representing an unsaturated surface layer. Seepage behaviors into the unsaturated surface layer were then evaluated based on the experiment data. The results show that the water level rises due to pore water seepage from the liquefied ground into the unsaturated surface layer right above the liquefied ground. For this reason, a ground shallower than the original groundwater level can be liquified.


2012 ◽  
Vol 238 ◽  
pp. 451-454
Author(s):  
Zhong Ming He ◽  
Wei Wu ◽  
Ling Zeng ◽  
Zhong Xin Cai

A numerical model is built by Finite Element Software, discussed the effect of rainfall on slope pore water pressure, volatile water content and depth of infiltration in continuous rain condition. The result indicated that when the rainfall intensity and rainfall duration reach a certain condition, the ground water table rises slowly, and mostly, the spill points of ground water locate in the foot of slope. The slope section appears three pore water pressure divisions: transient saturated zone, negative pressure region and hydrostatic pressure area after the rain.


2020 ◽  
Vol 1 (1) ◽  
pp. 475-488
Author(s):  
Jioni Santo Frans ◽  
Muhammad Hafizh Nurfalaq

ABSTRAK Dalam keadaan normal, suatu massa batuan memiliki kesetimbangan gaya yang bekerja. Kesetimbangan gaya yang bekerja tersebut bisa terganggu akibat terjadinya perubahan kondisi massa batuan, baik secara alamiah (erosi, patah, peningkatan muka air tanah) maupun aktivitas manusia (pengupasan, pengangkutan, penggalian, penimbunan). Respon dari perubahan tersebut, massa batuan dapat mengalami ketidakstabilan sebagai usaha untuk mencapai kondisi kesetimbangan baru. Hal ini akan memicu gerakan massa batuan akibat lereng yang tidak stabil dan terjadinya longsor. Lereng yang tidak stabil akan berdampak terhadap faktor keselamatan, ekonomi, dan sosial. Air tanah memiliki permasalahan tersendiri dalam pengelolaan tambang. Tekanan air pori (pore water pressure) dari air tanah dapat menimbulkan gaya angkat (uplift force) dan menurunkan kekuatan suatu massa batuan penyusun lereng, yang mana akan mempengaruhi kestabilan suatu lereng. Karakteristik daerah penelitian yang memiliki muka air tanah relatif dekat dengan permukaan, menyebabkan lereng berada dalam kondisi hampir jenuh. Penelitian ini bertujuan untuk melakukan studi pengaruh muka air tanah terhadap kestabilan lereng tambang batubara di daerah penelitian. Metode penelitian yang digunakan meliputi pengumpulan data primer melalui observasi lapangan untuk mengumpulkan data-data teknis terkait dan pengumpulan data sekunder melalui studi literatur. Analisa kestabilan lereng dilakukan untuk mendapatkan rekomendasi dengan nilai Faktor Keamanan minimum 1,30. Hasil penelitian menunjukkan muka air tanah memiliki hubungan berbanding terbalik terhadap nilai Faktor Keamanan. Rekomendasi yang dihasilkan yaitu melakukan dewatering dengan menggunakan drain hole. Target penurunan muka air tanah pada dinding tambang daerah penelitian adalah RL+40 pada area sidewall dan RL+65 pada area highwall. Altenatif lain yang diajukan oleh penulis adalah dengan melandaikan sudut lereng keseluruhan (overall slope angle) pada dinding tambang di daerah penelitian. Dinding tambang daerah penelitian direkomendasikan untuk dilakukan pelandaian dengan sudut lereng keseluruhan berkisar 24°. Kata kunci: kestabilan lereng, muka air tanah, longsor, dewatering, sudut lereng keseluruhan  ABSTRACT Under normal circumstances, a rock mass has an equilibrium of working forces. The equilibrium of these working forces can be disrupted due to changes in rock mass conditions, both naturally (erosion, broken, increased ground water level) and human activities (stripping, loading, excavation, backfill). In response to these changes, rock mass can have instability issue as an effort to reach new equilibrium conditions. This  condition will trigger rock mass movements and slope failure due to unstable slopes. Unstable slopes will affect the safety, economic and social factors. Groundwater has its own problems in mining activities. Pore water pressure from ground water can cause uplift force and decrease the strength of a rock mass forming a slope, which will affect the slope stability. Characteristics of the study area which has groundwater level relatively close to surface, causes the slope to be in nearly saturated condition. This research aims to study the effect of groundwater level on the stability of coal mine slopes in the study area. The research method used includes collecting primary data through field observations to collect related technical data and secondary data collection through literature studies. Slope stability analysis is carried out to obtain recommendations with a minimum Safety Factor value of 1.30. The results showed the ground water level has an inverse relationship to the value of the Safety Factor. The recommendations are dewatering using drain holes. The target of groundwater level reduction in the mine wall of the study area is RL+40 in the sidewall area and RL+65 in the highwall area. Another alternative proposed by the author is by resloping the overall slope angle of the mine wall in the study area. The mining wall of the study area is recommended for alignment with an overall slope angle of around 24 °. Keywords: slope stability, ground water level, landslides, dewatering, overall slope angle


2014 ◽  
Vol 501-504 ◽  
pp. 323-326
Author(s):  
Jian Xin Wang ◽  
Qi Liang Guo

Earthquake and subsequent rainfall infiltration always easily induced slope failure. The paper takes one slope as the studying example to assess the preliminary joint effect of earthquake disturbing and subsequent rainfall on slope failure. Based on the unsaturated infiltration theory, subsequent rainfall unsaturated seepage fields of un-disturbing and seismic slope were simulated separately. The results of earthquake disturbing slope compared with the initial one were discussed in detailed. The conclusion showed seismic slope is inclined to rainfall infiltration, which obviously increased the pore water pressure and induced rise of ground water.


Author(s):  
Trần Thanh Nhàn

In order to observe the end of primary consolidation (EOP) of cohesive soils with and without subjecting to cyclic loading, reconstituted specimens of clayey soils at various Atterberg’s limits were used for oedometer test at different loading increments and undrained cyclic shear test followed by drainage with various cyclic shear directions and a wide range of shear strain amplitudes. The pore water pressure and settlement of the soils were measured with time and the time to EOP was then determined by different methods. It is shown from observed results that the time to EOP determined by 3-t method agrees well with the time required for full dissipation of the pore water pressure and being considerably larger than those determined by Log Time method. These observations were then further evaluated in connection with effects of the Atterberg’s limit and the cyclic loading history.


1981 ◽  
Vol 27 (97) ◽  
pp. 503-505 ◽  
Author(s):  
Ian J. Smalley

AbstractRecent investigations have shown that various factors may affect the shear strength of glacial till and that these factors may be involved in the drumlin-forming process. The presence of frozen till in the deforming zone, variation in pore-water pressure in the till, and the occurrence of random patches of dense stony-till texture have been considered. The occurrence of dense stony till may relate to the dilatancy hypothesis and can be considered a likely drumlin-forming factor within the region of critical stress levels. The up-glacier stress level now appears to be the more important, and to provide a sharper division between drumlin-forming and non-drumlin-forming conditions.


2018 ◽  
Vol 35 (2) ◽  
pp. 111
Author(s):  
Kun ZHANG ◽  
Ze ZHANG ◽  
Xiangyang SHI ◽  
Sihai LI ◽  
Donghui XIAO

Sign in / Sign up

Export Citation Format

Share Document