The Preliminary Study of Combined Effect of Earthquake Disturbed and Subsequent Rainfall on Slope Failure

2014 ◽  
Vol 501-504 ◽  
pp. 323-326
Author(s):  
Jian Xin Wang ◽  
Qi Liang Guo

Earthquake and subsequent rainfall infiltration always easily induced slope failure. The paper takes one slope as the studying example to assess the preliminary joint effect of earthquake disturbing and subsequent rainfall on slope failure. Based on the unsaturated infiltration theory, subsequent rainfall unsaturated seepage fields of un-disturbing and seismic slope were simulated separately. The results of earthquake disturbing slope compared with the initial one were discussed in detailed. The conclusion showed seismic slope is inclined to rainfall infiltration, which obviously increased the pore water pressure and induced rise of ground water.

2011 ◽  
Vol 255-260 ◽  
pp. 3488-3492
Author(s):  
Bao Lin Xiong ◽  
Jing Song Tang ◽  
Chun Jiao Lu

Rainfall is one of the main factors that influence the stability of slope. Rainfall infiltration will cause soil saturation changing and further influence pore water pressure and medium permeability coefficient. Based on porous media saturation-unsaturated flow theory, the slope transient seepage field is simulated under the conditions of rainfall infiltration. It is shown that change of pore water pressure in slope soil lag behind relative changes in rainfall conditions. As the rainfall infiltrate, unsaturated zone in top half of slope become diminution, the soil suction and shear strength reduce, so stabilization of soil slope is reduced.


2012 ◽  
Vol 204-208 ◽  
pp. 487-491
Author(s):  
Jian Hua Liu ◽  
Zhi Min Chen ◽  
Wei He

Based on the saturated-unsaturated seepage theory and considering soil-hydraulic permeability coefficient characteristic curves of rock slope, the variation of suction in unsaturated region and transient saturated zone formation of rock slope were analyzed. Combined with engineering example, the strength reduction methods were adopted to analyzing the rock slope stability influence factors considering unsaturated seepage with different rainfall intensity and duration. The results show that the flow domain owing to rainfall infiltration mainly appears surface layer region of slope. The rainfall infiltration caused the groundwater level rise, the rising of transient pore water pressure and the fall of suction in unsaturated region caused the slope stability decrease. The rainfall intensity and duration have obvious influence on slope stability, and in the same rainfall duration condition, the safety coefficient of slope decreases with the accretion of rainfall intensity. With the rainfall duration increasing, the water in soil has more deep infiltration, the water content and pore water pressure was higher in the same high position, the decreasing of suction caused the safety coefficient of slope has more reduce.


2020 ◽  
Vol 12 (7) ◽  
pp. 2839
Author(s):  
Sinhang Kang ◽  
Seung-Rae Lee ◽  
Sung-Eun Cho

Shallow slope failures occur almost every year during the rainy season. Continuous observation of the meteorological parameters and hydrological characteristics is required to more clearly understand the triggering mechanisms of shallow slope failure. In addition, influential factors, such as type of relative permeability models, air flow, and variation of hydraulic conductivity associated with stress–strain behavior of soil, have significant effects on the actual mechanism of rainfall infiltration. Real-time data including hourly rainfall and pore water pressure in response to rainfall was recorded by devices; then, the change in pore pressure from the devices was compared to the results from the infiltration analysis with applications of three relative permeability models, air flow, and the coupled hydro-mechanical analysis to examine an appropriate site-specific approach to a rainfall infiltration analysis. The infiltration and stability analyses based on the site-specific hydrologic characteristics were utilized to create maps of safety factors that depend on the cumulative rainfall. In regions vulnerable to landslides, rainfall forecast information and safety factor maps built by applying various rainfall scenarios can be useful in preparing countermeasures against disasters during the rainy season.


2007 ◽  
Vol 32 (10) ◽  
pp. 1558-1573 ◽  
Author(s):  
Garey A. Fox ◽  
Glenn V. Wilson ◽  
Andrew Simon ◽  
Eddy J. Langendoen ◽  
Onur Akay ◽  
...  

2014 ◽  
Vol 501-504 ◽  
pp. 1927-1931
Author(s):  
Guang Ju Wen ◽  
Wen Jie Deng ◽  
Feng Wen

Based on the characteristics of slope failure induced by rainfall, from the point of view of moisture migration and combining unsaturated soil mechanics, the characteristics of moisture migration in slope under different rainfall intensities were analyzed by finite element method. The results reveal that under rainfall, the pore water pressure in slope is in layered distribution, and at the bottom of slope, the pore water pressure is the highest, the top is lower and the middle is the lowest. The volumetric water content is in nonlinear distribution and the degree of nonlinear in unsaturated area is higher than that of the saturated area. The permeability coefficient of soil rises with the increase of rainfall intensity, and when the soil is saturated, its permeability coefficient is saturate permeability coefficient.


2005 ◽  
Vol 2 ◽  
pp. 305-308 ◽  
Author(s):  
S. Dapporto ◽  
P. Aleotti ◽  
N. Casagli ◽  
G. Polloni

Abstract. On 14-16 November 2002 the North Italy was affected by an intense rainfall event: in the Albaredo valley (Valtellina) more than 200 mm of rain fell triggering about 50 shallow landslides, mainly soil slips and soil slip-debris flows. Landslides occurred above the critical rainfall thresholds computed by Cancelli and Nova (1985) and Ceriani et al. (1994) for the Italian Central Alps: in fact the cumulative precipitation at the soil slips initiation time was 230 mm (in two days) with a peak intensity of 15 mm/h. A coupled analysis of seepage and instability mechanisms is performed in order to evaluate the potential for slope failure during the event. Changes in positive and negative pore water pressures during the event are modelled by a finite element analysis of water flow in transient conditions, using as boundary condition for the nodes along the slope surface the recorded rainfall rate. The slope stability analysis is conducted applying the limit equilibrium method, using pore water pressure distributions obtained in the different time steps by the seepage analysis as input data for the calculation of the factor of safety.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Joon-Young Park ◽  
Young-Suk Song

A combined analysis involving a laboratory test and numerical modeling was performed to investigate the hydraulic processes leading to slope failure during rainfall. Through a laboratory landslide test in which artificial rainfall was applied to a homogeneous sandy slope, the timing and configurations of multiple slides were identified. In addition, volumetric water content was measured in real time through the use of monitoring sensors. The measured volumetric water content data were then used to validate the relevance of the numerical modeling results. The validated numerical modeling of the laboratory-scale slope failures provided insight into the hydraulic conditions that trigger landslides. According to the numerical modeling results, the miniaturized slope in the laboratory test was saturated in a manner so that the wetting front initially progresses downward and then the accumulated rainwater at the toe of the slope creates a water table that advances toward the crest. Furthermore, each of the five sequential failures that occurred during this experiment created slip surfaces where the pore-water pressure had achieved full saturation and an excessive pore-water pressure state. The findings of this study are expected to help understand the hydraulic prerequisites of landslide phenomena.


2013 ◽  
Vol 353-356 ◽  
pp. 307-311 ◽  
Author(s):  
Xi Yi Yang ◽  
Fang Guo

In order to research on slope seepage field and slop stability under rainfall infiltration, this paper combines finite element with limit equilibrium theory to study. The results show that under rainfall, pore water pressure of the slope crest and slope toe in slope wash is greatly influenced by rainfall; Change in the volume moisture content is more sensitive than pore water pressure, volumetric moisture content of each location is increasing quickly at the initial stage of rain, volumetric moisture content in the lower locations is the first to reach saturated due to the continued supply and gravity of the rain; The slope stability reduces with rainfall infiltration, the greater the rainfall intensity, the more obvious decline the slope safety factor.


2012 ◽  
Vol 238 ◽  
pp. 451-454
Author(s):  
Zhong Ming He ◽  
Wei Wu ◽  
Ling Zeng ◽  
Zhong Xin Cai

A numerical model is built by Finite Element Software, discussed the effect of rainfall on slope pore water pressure, volatile water content and depth of infiltration in continuous rain condition. The result indicated that when the rainfall intensity and rainfall duration reach a certain condition, the ground water table rises slowly, and mostly, the spill points of ground water locate in the foot of slope. The slope section appears three pore water pressure divisions: transient saturated zone, negative pressure region and hydrostatic pressure area after the rain.


2011 ◽  
Vol 71-78 ◽  
pp. 4864-4867
Author(s):  
Guang Hua Cai ◽  
Hai Jun Lu ◽  
Wei He ◽  
Long Guan ◽  
Wei Qi Xu

Rainfall infiltration is currently one of the important factors in studying the soil-slope stability. By using saturated-unsaturated seepage theory, the traditional limit equilibrium method and so on, analyze the water content and the pore-water pressure changes under the rainfall condition, then analyze the influence mechanism of the slope stability. Through the Seep/W and the Slope/W of the GEO-Slope software, do the numerical simulation of the slope stability under the rainfall condition, to seek the distribution of pore-water pressure on the rainfall situation and the influence of the seepage field from various parameters such as rainfall intensity and the soil permeability coefficient, thus to study the slope stability.


Sign in / Sign up

Export Citation Format

Share Document