scholarly journals Lateral bedrock erosion and valley formation in a heterogeneously layered landscape, Northeast Kansas

Author(s):  
Abbey L. Marcotte ◽  
Christina M. Neudorf ◽  
Abigail L. Langston
Keyword(s):  
2021 ◽  
Vol 790 ◽  
pp. 148244
Author(s):  
Jiadong Dai ◽  
Jianhui Zhang ◽  
Haichao Xu ◽  
Yong Wang ◽  
Guoming Zhang ◽  
...  

Geology ◽  
2021 ◽  
Author(s):  
Joel S. Scheingross ◽  
Michael P. Lamb

Waterfall plunge pools experience cycles of sediment aggradation and scour that modulate bedrock erosion, habitat availability, and hazard potential. We calculate sediment flux divergence to evaluate the conditions under which pools deposit and scour sediment by comparing the sediment transport capacities of waterfall plunge pools (Qsc_pool) and their adjacent river reaches (Qsc_river). Results show that pools fill with sediment at low river discharge because the waterfall jet is not strong enough to transport the supplied sediment load out of the pool. As discharge increases, the waterfall jet strengthens, allowing pools to transport sediment at greater rates than in adjacent river reaches. This causes sediment scour from pools and bar building at the downstream pool boundary. While pools may be partially emptied of sediment at modest discharge, floods with recurrence intervals >10 yr are typically required for pools to scour to bedrock. These results allow new constraints on paleodischarge estimates made from sediment deposited in plunge pool bars and suggest that bedrock erosion at waterfalls with plunge pools occurs during larger floods than in river reaches lacking waterfalls.


2007 ◽  
Vol 32 (6) ◽  
pp. 929-944 ◽  
Author(s):  
Mark Quigley ◽  
Mike Sandiford ◽  
Keith Fifield ◽  
Abaz Alimanovic

2015 ◽  
Vol 3 (1) ◽  
pp. 113-138 ◽  
Author(s):  
L. Zhang ◽  
G. Parker ◽  
C. P. Stark ◽  
T. Inoue ◽  
E. Viparelli ◽  
...  

Abstract. The 1-D saltation–abrasion model of channel bedrock incision of Sklar and Dietrich (2004), in which the erosion rate is buffered by the surface area fraction of bedrock covered by alluvium, was a major advance over models that treat river erosion as a function of bed slope and drainage area. Their model is, however, limited because it calculates bed cover in terms of bedload sediment supply rather than local bedload transport. It implicitly assumes that as sediment supply from upstream changes, the transport rate adjusts instantaneously everywhere downstream to match. This assumption is not valid in general, and thus can give rise to unphysical consequences. Here we present a unified morphodynamic formulation of both channel incision and alluviation that specifically tracks the spatiotemporal variation in both bedload transport and alluvial thickness. It does so by relating the bedrock cover fraction to the ratio of alluvium thickness to bedrock macro-roughness, rather than to the ratio of bedload supply rate to capacity bedload transport. The new formulation (MRSAA) predicts waves of alluviation and rarification, in addition to bedrock erosion. Embedded in it are three physical processes: alluvial diffusion, fast downstream advection of alluvial disturbances, and slow upstream migration of incisional disturbances. Solutions of this formulation over a fixed bed are used to demonstrate the stripping of an initial alluvial cover, the emplacement of alluvial cover over an initially bare bed and the advection–diffusion of a sediment pulse over an alluvial bed. A solution for alluvial–incisional interaction in a channel with a basement undergoing net rock uplift shows how an impulsive increase in sediment supply can quickly and completely bury the bedrock under thick alluvium, thus blocking bedrock erosion. As the river responds to rock uplift or base level fall, the transition point separating an alluvial reach upstream from an alluvial–bedrock reach downstream migrates upstream in the form of a "hidden knickpoint". A tectonically more complex case of rock uplift subject to a localized zone of subsidence (graben) yields a steady-state solution that is not attainable with the original saltation–abrasion model. A solution for the case of bedrock–alluvial coevolution upstream of an alluviated river mouth illustrates how the bedrock surface can be progressively buried not far below the alluvium. Because the model tracks the spatiotemporal variation in both bedload transport and alluvial thickness, it is applicable to the study of the incisional response of a river subject to temporally varying sediment supply. It thus has the potential to capture the response of an alluvial–bedrock river to massive impulsive sediment inputs associated with landslides or debris flows.


2015 ◽  
Vol 3 (3) ◽  
pp. 849-908 ◽  
Author(s):  
F. Beaud ◽  
G. E. Flowers ◽  
J. G. Venditti

Abstract. Bedrock erosion by sediment-bearing subglacial water remains little-studied, however the process is thought to contribute to bedrock erosion rates in glaciated landscapes and is implicated in the excavation of tunnel valleys and the incision of inner gorges. We adapt physics-based models of fluvial abrasion to the subglacial environment, assembling the first model designed to quantify bedrock erosion caused by transient subglacial water flow. The subglacial drainage model consists of a one-dimensional network of cavities dynamically coupled to one or several Röthlisberger channels (R-channels). The bedrock erosion model is based on the tools and cover effect, whereby particles entrained by the flow impact exposed bedrock. We explore the dependency of glacial meltwater erosion on the structure and magnitude of water input to the system, the ice geometry and the sediment supply. We find that erosion is not a function of water discharge alone, but also depends on channel size, water pressure and on sediment supply, as in fluvial systems. Modelled glacial meltwater erosion rates are one to two orders of magnitude lower than the expected rates of total glacial erosion required to produce the sediment supply rates we impose, suggesting that glacial meltwater erosion is negligible at the basin scale. Nevertheless, due to the extreme localization of glacial meltwater erosion (at the base of R-channels), this process can carve bedrock (Nye) channels. In fact, our simulations suggest that the incision of bedrock channels several centimetres deep and a few meters wide can occur in a single year. Modelled incision rates indicate that subglacial water flow can gradually carve a tunnel valley and enhance the relief or even initiate the carving of an inner gorge.


2015 ◽  
Vol 30 (5) ◽  
pp. 452-463 ◽  
Author(s):  
JOHN T. ANDREWS ◽  
ANDERS A. BJORK ◽  
DENNIS D. EBERL ◽  
ANNE E. JENNINGS ◽  
EMILY P. VERPLANCK

2016 ◽  
Author(s):  
Jens M. Turowski ◽  
Rebecca Hodge

Abstract. The cover effect in fluvial bedrock erosion is a major control on bedrock channel morphology and long-term channel dynamics. Here, we suggest a probabilistic framework for the description of the cover effect that can be applied to field, laboratory and modelling data and thus allows the comparison of results from different sources. The framework describes the formation of sediment cover as a function of the probability of sediment being deposited on already alleviated areas of the bed. We define benchmark cases and suggest physical interpretations of deviations from these benchmarks. Furthermore, we develop a reach-scale model for sediment transfer in a bedrock channel and use it to clarify the relations between the sediment mass residing on the bed, the exposed bedrock fraction and the transport stage. We derive system time scales and investigate cover response to cyclic perturbations. The model predicts that bedrock channels achieve grade in steady state by adjusting bed cover. Thus, bedrock channels have at least two characteristic time scales of response. Over short time scales, the degree of bed cover is adjusted such that they can just transport the supplied sediment load, while over long time scales, channel morphology evolves such that the bedrock incision rate matches the tectonic uplift or base level lowering rate.


2015 ◽  
Vol 3 (4) ◽  
pp. 463-482 ◽  
Author(s):  
D. L. Egholm ◽  
J. L. Andersen ◽  
M. F. Knudsen ◽  
J. D. Jansen ◽  
S. B. Nielsen

Abstract. There is growing recognition of strong periglacial control on bedrock erosion in mountain landscapes, including the shaping of low-relief surfaces at high elevations (summit flats). But, as yet, the hypothesis that frost action was crucial to the assumed Late Cenozoic rise in erosion rates remains compelling and untested. Here we present a landscape evolution model incorporating two key periglacial processes – regolith production via frost cracking and sediment transport via frost creep – which together are harnessed to variations in temperature and the evolving thickness of sediment cover. Our computational experiments time-integrate the contribution of frost action to shaping mountain topography over million-year timescales, with the primary and highly reproducible outcome being the development of flattish or gently convex summit flats. A simple scaling of temperature to marine δ18O records spanning the past 14 Myr indicates that the highest summit flats in mid- to high-latitude mountains may have formed via frost action prior to the Quaternary. We suggest that deep cooling in the Quaternary accelerated mechanical weathering globally by significantly expanding the area subject to frost. Further, the inclusion of subglacial erosion alongside periglacial processes in our computational experiments points to alpine glaciers increasing the long-term efficiency of frost-driven erosion by steepening hillslopes.


2018 ◽  
Vol 1074 ◽  
pp. 012072
Author(s):  
Zhijing Li ◽  
Xiaobin Liu ◽  
Dazhi Li ◽  
Zhongwu Jin ◽  
Di Hou

Sign in / Sign up

Export Citation Format

Share Document