scholarly journals Subduction of trench-fill sediments beneath an accretionary wedge: insights from sandbox analogue experiments

2019 ◽  
Author(s):  
Atsushi Noda ◽  
Hiroaki Koge ◽  
Yasuhiro Yamada ◽  
Ayumu Miyakawa ◽  
Juichiro Ashi
Geosphere ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 953-968 ◽  
Author(s):  
Atsushi Noda ◽  
Hiroaki Koge ◽  
Yasuhiro Yamada ◽  
Ayumu Miyakawa ◽  
Juichiro Ashi

Abstract Sandy trench-fill sediments at accretionary margins are commonly scraped off at the frontal wedge and rarely subducted to the depth of high-pressure (HP) metamorphism. However, some ancient exhumed accretionary complexes are associated with high-pressure–low-temperature (HP-LT) metamorphic rocks, such as psammitic schists, which are derived from sandy trench-fill sediments. This study used sandbox analogue experiments to investigate the role of seafloor topography in the transport of trench-fill sediments to depth during subduction. We conducted two different types of experiments, with or without a rigid topographic high (representing a seamount). We used an undeformable backstop that was unfixed to the side wall of the apparatus to allow a seamount to be subducted beneath the overriding plate. In experiments without a seamount, progressive thickening of the accretionary wedge pushed the backstop down, leading to a stepping down of the décollement, narrowing of the subduction channel, and underplating of the wedge with subducting sediment. In contrast, in experiments with a topographic high, the subduction of the topographic high raised the backstop, leading to a stepping up of the décollement and widening of the subduction channel. These results suggest that the subduction of stiff topographic relief beneath an inflexible overriding plate might enable trench-fill sediments to be deeply subducted and to become the protoliths of HP-LT metamorphic rocks.


2018 ◽  
Author(s):  
Ziran Jiang ◽  
Bin Deng ◽  
Caiwei Fan ◽  
Yu He ◽  
Dong Lai ◽  
...  

Abstract. Cohesion and friction coefficients are fundamental parameters of granular materials used in analogue experiments. Thus, to test the physical characteristics and mechanical behaviour of the materials used in the experiments will help to better understand into what degree the results of experiments of geological processes depend on the material properties. Our test suggests significant differences between quartz sand and glass bead, in particular the shape factors (~ 1.55 of quartz sand to ~ 1.35 glass bead, angular to rounded) and grain sorting (moderately to well sorted). The glass beads show much better grain sorting and smaller shape factors than the quartz sand. Also they have smaller friction coefficient (~ 0.5 to ~ 0.6) and cohesion (20–30 Ma to 70–100 Ma), no matter of the grain size in our tested samples. The quartz sand shows much smaller friction coefficient (~ 0.6 to ~ 0.65), and smaller cohesion (~ 70 Pa to ~ 100 Pa) than that of smaller grain size sand. We have conducted four sets of analogue experiments with three repeats at the minimum. Our models show that material properties have important influence on the geometry and kinematics of the accretionary wedge. Although the difference in geometries are small, models with larger grain size develop wedges with higher wedge height, larger taper, shorter wedge length and less number of faults under the same amount of bulk shortening. In particular, models with basal detachment (even with 1 mm thickness), show significant difference in geometry and kinematics with that of quartz sand. We thus argue that the geometry and kinematics of the wedge appear to be significantly influenced by relative brittle and ductile strengths, and, to a lesser degree by the layering anisotropy. The basal detachment (even of tiny thickness) determines the first-order control on the location and development of accretionary wedge, in a contrast to the physical properties of brittle materials.


2019 ◽  
Author(s):  
Atsushi Noda ◽  
Hiroaki Koge ◽  
Yasuhiro Yamada ◽  
Ayumu Miyakawa ◽  
Juichiro Ashi

2019 ◽  
Author(s):  
Atsushi Noda ◽  
Hiroaki Koge ◽  
Yasuhiro Yamada ◽  
Ayumu Miyakawa ◽  
Juichiro Ashi

Tectonics ◽  
2010 ◽  
Vol 29 (3) ◽  
Author(s):  
Jeroen Smit ◽  
Jean-Pierre Burg ◽  
Asghar Dolati ◽  
Dimitrios Sokoutis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiziana Sgroi ◽  
Alina Polonia ◽  
Graziella Barberi ◽  
Andrea Billi ◽  
Luca Gasperini

AbstractThe Calabrian Arc subduction-rollback system along the convergent Africa/Eurasia plate boundary is among the most active geological structures in the Mediterranean Sea. However, its seismogenic behaviour is largely unknown, mostly due to the lack of seismological observations. We studied low-to-moderate magnitude earthquakes recorded by the seismic network onshore, integrated by data from a seafloor observatory (NEMO-SN1), to compute a lithospheric velocity model for the western Ionian Sea, and relocate seismic events along major tectonic structures. Spatial changes in the depth distribution of earthquakes highlight a major lithospheric boundary constituted by the Ionian Fault, which separates two sectors where thickness of the seismogenic layer varies over 40 km. This regional tectonic boundary represents the eastern limit of a domain characterized by thinner lithosphere, arc-orthogonal extension, and transtensional tectonic deformation. Occurrence of a few thrust-type earthquakes in the accretionary wedge may suggest a locked subduction interface in a complex tectonic setting, which involves the interplay between arc-orthogonal extension and plate convergence. We finally note that distribution of earthquakes and associated extensional deformation in the Messina Straits region could be explained by right-lateral displacement along the Ionian Fault. This observation could shed new light on proposed mechanisms for the 1908 Messina earthquake.


2016 ◽  
Vol 17 (7) ◽  
pp. 2661-2686 ◽  
Author(s):  
Francesca C. Ghisetti ◽  
Philip M. Barnes ◽  
Susan Ellis ◽  
Andreia A. Plaza-Faverola ◽  
Daniel H. N. Barker

Sign in / Sign up

Export Citation Format

Share Document