scholarly journals Using the aa index over the last 14 solar cycles to characterize extreme geomagnetic activity

2019 ◽  
Author(s):  
Sandra C Chapman ◽  
Richard B. Horne ◽  
Nicholas Wynn Watkins
2020 ◽  
Author(s):  
Sandra C Chapman ◽  
Richard B. Horne ◽  
Nicholas Wynn Watkins

2011 ◽  
Vol 29 (8) ◽  
pp. 1365-1375 ◽  
Author(s):  
J. J. Love

Abstract. Analysis is made of the geomagnetic-activity aa index and its source K-index data from groups of ground-based observatories in Britain, and Australia, 1868.0–2009.0, solar cycles 11–23. The K data show persistent biases, especially for high (low) K-activity levels at British (Australian) observatories. From examination of multiple subsets of the K data we infer that the biases are not predominantly the result of changes in observatory location, localized induced magnetotelluric currents, changes in magnetometer technology, or the modernization of K-value estimation methods. Instead, the biases appear to be artifacts of the latitude-dependent scaling used to assign K values to particular local levels of geomagnetic activity. The biases are not effectively removed by weighting factors used to estimate aa. We show that long-term averages of the aa index, such as annual averages, are dominated by medium-level geomagnetic activity levels having K values of 3 and 4.


2009 ◽  
Vol 1 (2) ◽  
Author(s):  
Jaroslav Střeštïk

AbstractIt is known that solar wind velocity fluctuates regularly with a period of about 1.3 years. This periodicity (and other signals with periods near to 1.1 and 0.9 years) has also been observed in biological data. The variation is a temporary feature, mostly being observed in the early 1990s. Here, the occurrence of these periodic signals in solar and geomagnetic activity between 1932 and 2005 has been investigated. The signal with 1.3 year period is present in geomagnetic activity only in a short interval after 1990 and to a lesser extent around 1942. At other times the signal is very weak or not present at all. Other periods are much lower amplitude and appear only sporadically throughout the time investigated. A connection between these periods and solar cycles (e.g. different even or odd cycles) has not been proven. It is possible that there is a long-term periodicity in the occurrence of the 1.3 year period but the time series data available is insufficient to confirm this. There are no such periodicities in solar activity. In order to gain a greater understanding of these periodic signals, we should search for their origin in interplanetary space.


2016 ◽  
Vol 34 (12) ◽  
pp. 1159-1164 ◽  
Author(s):  
Pieter Benjamin Kotzé

Abstract. In this paper we use wavelets and Lomb–Scargle spectral analysis techniques to investigate the changing pattern of the different harmonics of the 27-day solar rotation period of the AE (auroral electrojet) index during various phases of different solar cycles between 1960 and 2014. Previous investigations have revealed that the solar minimum of cycles 23–24 exhibited strong 13.5- and 9.0-day recurrence in geomagnetic data in comparison to the usual dominant 27.0-day synodic solar rotation period. Daily mean AE indices are utilized to show how several harmonics of the 27-day recurrent period change during every solar cycle subject to a 95 % confidence rule by performing a wavelet analysis of each individual year's AE indices. Results show that particularly during the solar minimum of 23–24 during 2008 the 27-day period is no longer detectable above the 95 % confidence level. During this interval geomagnetic activity is now dominated by the second (13.5-day) and third (9.0-day) harmonics. A Pearson correlation analysis between AE and various spherical harmonic coefficients describing the solar magnetic field during each Carrington rotation period confirms that the solar dynamo has been dominated by an unusual combination of sectorial harmonic structure during 23–24, which can be responsible for the observed anomalously low solar activity. These findings clearly show that, during the unusual low-activity interval of 2008, auroral geomagnetic activity was predominantly driven by high-speed solar wind streams originating from multiple low-latitude coronal holes distributed at regular solar longitude intervals.


2021 ◽  
Author(s):  
Sandra Chapman ◽  
Scott McIntosh ◽  
Robert Leamon ◽  
Nicholas Watkins

<p>We construct a new solar cycle phase clock which maps each of the last 18 solar cycles onto a single normalized epoch for the approximately 22 year Hale (magnetic polarity) cycle, using the Hilbert transform of daily sunspot numbers (SSN) since 1818. We use the clock to study solar and geomagnetic climatology as seen in datasets available over multiple solar cycles. The occurrence of solar maxima on the clock shows almost no Hale cycle dependence, confirming that the clock is synchronized with polarity reversals.  The odd cycle minima lead the even cycle minima by ~ 1.1 normalized years, whereas the odd cycle terminators (when sunspot bands from opposite hemispheres have moved to the equator and coincide, thus terminating the cycle, McIntosh(2019)) lag the even cycle terminators  by ~ 2.3 normalized years.  The average interval between each minimum and terminator  is thus relatively extended for odd cycles and shortened for even ones. We re-engineer the R27 index that was orignally proposed by Sargent(1985) to parameterize 27 day recurrences in the aa index. We perform an epoch analysis of autocovariance in the aa index using the Hale cycle clock to obtain a high time resolution parameter for 27 day recurrence, <acv(27)>. This reveals that the transition to recurrence, that is, to an ordered solar wind dominated by high speed streams, is fast, occurring within 2-3 solar rotations or less. It resolves an extended late declining phase which is approximately twice as long on even Schwabe cycles as odd ones. We find that Galactic Cosmic Ray flux rises in step with <acv(27)> but then stays high. Our analysis also identifies a slow timescale trend in SSN that simply tracks the Gleissberg cycle. We find that this trend is in phase with the slow timescale trend in the modulus of sunspot latitudes, and in antiphase with that of the R27 index.</p>


2020 ◽  
Vol 10 ◽  
pp. 52
Author(s):  
Alessandro Ippolito ◽  
Loredana Perrone ◽  
Christina Plainaki ◽  
Claudio Cesaroni

The variations of the hourly observations of the critical frequency foF2, recorded at the Ionospheric Observatory of Rome by the AIS-INGV ionosonde (geographic coordinates 41.82° N, 12.51° E; geomagnetic coordinates 41.69° N, 93.97° E) during the low activity periods at the turn of solar cycles 21–22, 22–23 and 23–24, are investigated. Deviations of foF2 greater than ± 15% with respect to a background level, and with a minimum duration of 3 h, are here considered anomalous. The dependence of these foF2 anomalies on geomagnetic activity has been accurately investigated. Particular attention has been paid to the last deep solar minimum 2007–2009, in comparison with the previous solar cycle minima. The lack of day-time anomalous negative variations in the critical frequency of the F2 layer, is one of the main findings of this work. Moreover, the analysis of the observed foF2 anomalies confirms the existence of two types of positive F2 layer disturbances, characterised by different morphologies and, different underlying physical processes. A detailed analysis of four specific cases allows the definition of possible scenarios for the explanation of the mechanisms behind the generation of the foF2 anomalies.


2004 ◽  
Vol 22 (4) ◽  
pp. 1171-1176 ◽  
Author(s):  
E. M. Apostolov ◽  
D. Altadill ◽  
M. Todorova

Abstract. Solar cycle variations of the amplitudes of the 27-day solar rotation period reflected in the geomagnetic activity index Ap, solar radio flux F10.7cm and critical frequency foF2 for mid-latitude ionosonde station Moscow from the maximum of sunspot cycle 18 to the maximum of cycle 23 are examined. The analysis shows that there are distinct enhancements of the 27-day amplitudes for foF2 and Ap in the late declining phase of each solar cycle while the amplitudes for F10.7cm decrease gradually, and the foF2 and Ap amplitude peaks are much larger for even-numbered solar cycles than for the odd ones. Additionally, we found the same even-high and odd-low pattern of foF2 for other mid-latitude ionosonde stations in Northern and Southern Hemispheres. This property suggests that there exists a 22-year cycle in the F2-layer variability coupled with the 22-year cycle in the 27-day recurrence of geomagnetic activity. Key words. Ionosphere (mid-latitude ionosphere; ionosphere- magnetosphere interactions) – Magnetospheric physics (solar wind-magnetosphere interactions)


1997 ◽  
Vol 15 (6) ◽  
pp. 719-728 ◽  
Author(s):  
D. M. Willis ◽  
P. R. Stevens ◽  
S. R. Crothers

Abstract. A previous application of extreme-value statistics to the first, second and third largest geomagnetic storms per solar cycle for nine solar cycles is extended to fourteen solar cycles (1844–1993). The intensity of a geomagnetic storm is measured by the magnitude of the daily aa index, rather than the half-daily aa index used previously. Values of the conventional aa index (1868–1993), supplemented by the Helsinki Ak index (1844–1880), provide an almost continuous, and largely homogeneous, daily measure of geomagnetic activity over an interval of 150 years. As in the earlier investigation, analytic expressions giving the probabilities of the three greatest storms (extreme values) per solar cycle, as continuous functions of storm magnitude (aa), are obtained by least-squares fitting of the observations to the appropriate theoretical extreme-value probability functions. These expressions are used to obtain the statistical characteristics of the extreme values; namely, the mode, median, mean, standard deviation and relative dispersion. Since the Ak index may not provide an entirely homogeneous extension of the aa index, the statistical analysis is performed separately for twelve solar cycles (1868–1993), as well as nine solar cycles (1868–1967). The results are utilized to determine the expected ranges of the extreme values as a function of the number of solar cycles. For fourteen solar cycles, the expected ranges of the daily aa index for the first, second and third largest geomagnetic storms per solar cycle decrease monotonically in magnitude, contrary to the situation for the half-daily aa index over nine solar cycles. The observed range of the first extreme daily aa index for fourteen solar cycles is 159–352 nT and for twelve solar cycles is 215–352 nT. In a group of 100 solar cycles the expected ranges are expanded to 137–539 and 177–511 nT, which represent increases of 108% and 144% in the respective ranges. Thus there is at least a 99% probability that the daily aa index will satisfy the condition aa < 550 for the largest geomagnetic storm in the next 100 solar cycles. The statistical analysis is used to infer that remarkable conjugate auroral observations on the night of 16 September 1770, which were recorded during the first voyage of Captain Cook to Australia, occurred during an intense geomagnetic storm.


2011 ◽  
Vol 29 (6) ◽  
pp. 1005-1018 ◽  
Author(s):  
Z. L. Du

Abstract. An integral response model is proposed to describe the relationship between geomagnetic activity (aa index) and solar activity (represented by sunspot number Rz): The aa at a given time t is the integral of Rz at past times (t'&amp;leq;t) multiplied by an exponential decay factor of the time differences (e−(t−t')/τ), where τ is the decay time scale (~40 months). The correlation coefficient of aa with the reconstructed series based on this model (rf=0.85) is much higher than that of aa with Rz (r0=0.61). If this model is applied to each solar cycle, the correlation coefficient will be higher (rf=0.95). This model can naturally explain some phenomena related to aa and Rz, such as (i) the significant increase in the aa index (and its baseline) over the twentieth century; (ii) the longer lag times of aa to Rz at solar cycle maxima than at minima; and (iii) the variations in the correlations related to solar and Hale cycles. These results demonstrate that aa depends not only on the present Rz but also on past values. The profile of aa can be better predicted from Rz by this model than by point-point correspondence.


Sign in / Sign up

Export Citation Format

Share Document