scholarly journals A decade of short-period earthquake rupture histories from multi-array back-projection

2021 ◽  
Author(s):  
Felipe Vera ◽  
Frederik Tilmann ◽  
Joachim Saul
2012 ◽  
Vol 117 (B2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Keith D. Koper ◽  
Alexander R. Hutko ◽  
Thorne Lay ◽  
Oner Sufri
Keyword(s):  

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
En-Jui Lee ◽  
Wu-Yu Liao ◽  
Guan-Wei Lin ◽  
Po Chen ◽  
Dawei Mu ◽  
...  

Rainfall-triggered landslides are one of the most deadly natural hazards in many regions. Seismic recordings have been used to examine source mechanisms and to develop monitoring systems of landslides. We present a semiautomatic algorithm for detecting and locating landslide events using both broadband and short-period recordings and have successfully applied our system to landslides in Taiwan. Compared to local earthquake recordings, the recordings of landslides usually show longer durations and lack distinctive P and S wave arrivals; therefore, the back projection method is adopted for the landslide detection and location. To identify the potential landslide events, the seismic recordings are band-passed from 1 to 3 Hz and the spectrum pattern in the time-frequency domain is used to distinguish landslides from other types of seismic sources based upon carefully selected empirical criteria. Satellite images before and after the detected and located landslide events are used for final confirmation. Our landslide detection and spatial-temporal location system could potentially benefit the establishment of rainfall-triggered landslide forecast models and provide more reliable constraints for physics-based landslide modeling. The accumulating seismic recordings of landslide events could be used as a training dataset for machine learning techniques, which will allow us to fully automate our system in the near future.


2020 ◽  
Author(s):  
Felipe Vera ◽  
Frederik Tilmann ◽  
Joachim Saul

<p><span>We present a back-projection method capable of being parameterized with multiples arrays. The rupture imaging is weighted to restrict uncertainties induced by non-symmetric azimuthal coverage of seismic arrays. The strategy also exploits the differences in time delays between </span><em><span>P</span></em><span> and depth phase (</span><em><span>pP)</span></em><span> waveforms by assuming them as proxies of the rupture that can be simultaneously back-projected. Surprisingly, this helps to improve the final results, even when depth phases overlap with the direct arrivals due to the rupture time exceeding the <em>pP-P</em> delay. Thus, the approach heightens the spatiotemporal resolvability enough to image rupture complexities. The rupture image of two large events demonstrates its robustness. The first one is the 14 November 2007 Mw 7.7 Tocopilla earthquake in northern Chile. The high-frequency rupture (0.5 - 2.0 Hz) encircles two asperities while the short-period energy radiated predominates up-dip of the coseismic slip. We propose the contribution of asperity rupture complexities and along-dip barriers to high-frequency emissions beyond the megathrust frictional structure. The second one is the Mw 7.5 Palu strike-slip earthquake, which occurred on 28 September 2018 in Sulawesi island. The back-projection reveals a prominent supershear rupture at a speed of 4.5 km/s. The result correlates with space geodesy data highlighting the successful recovery of fault structures. Finally, we discuss the potential and challenges of automating this analysis for near-real-time applications</span>, including near-source back-projection with strong-motion data.</p>


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


1974 ◽  
Vol 22 ◽  
pp. 193-203
Author(s):  
L̆ubor Kresák

AbstractStructural effects of the resonance with the mean motion of Jupiter on the system of short-period comets are discussed. The distribution of mean motions, determined from sets of consecutive perihelion passages of all known periodic comets, reveals a number of gaps associated with low-order resonance; most pronounced are those corresponding to the simplest commensurabilities of 5/2, 2/1, 5/3, 3/2, 1/1 and 1/2. The formation of the gaps is explained by a compound effect of five possible types of behaviour of the comets set into an approximate resonance, ranging from quick passages through the gap to temporary librations avoiding closer approaches to Jupiter. In addition to the comets of almost asteroidal appearance, librating with small amplitudes around the lower resonance ratios (Marsden, 1970b), there is an interesting group of faint diffuse comets librating in characteristic periods of about 200 years, with large amplitudes of about±8% in μ and almost±180° in σ, around the 2/1 resonance gap. This transient type of motion appears to be nearly as frequent as a circulating motion with period of revolution of less than one half that of Jupiter. The temporary members of this group are characteristic not only by their appearance but also by rather peculiar discovery conditions.


1999 ◽  
Vol 173 ◽  
pp. 381-387
Author(s):  
M. Królikowska ◽  
G. Sitarski ◽  
S. Szutowicz

AbstractThe nongravitational motion of five “erratic” short-period comets is studied on the basis of published astrometric observations. We present the precession models which successfully link all the observed apparitions of the comets: 21P/Giacobini-Zinner, 31P/Schwassmann-Wachmann 2, 32P/Comas Solá, 37P/Forbes, and 43P/Wolf-Harrington. We used the Sekanina's forced precession model of the rotating cometary nucleus to include the nongravitational terms into equations of the comet's motion. Values of six basic parameters (four connected with the rotating comet nucleus and two describing the precession of spin-axis of the nucleus) have been determined along the orbital elements from positional observations of the comets. The solutions were derived with additional assumptions which introduce instantaneous changes of modulus of reactive force,Aand of maximum of cometary activity with respect to perihelion time. The present precession models impose some contraints on sizes and rotational periods of cometary nuclei. According to our solutions the nucleus of 21P/Giacobini-Zinner with oblateness along the spin-axis of about 0.32 (equatorial to polar radius of 1.46) is the most oblate among five investigated comets.


1999 ◽  
Vol 173 ◽  
pp. 365-370
Author(s):  
Kh.I. Ibadinov

AbstractFrom the established dependence of the brightness decrease of a short-period comet dependence on the perihelion distance of its orbit it follows that part of the surface of these cometary nuclei gradually covers by a refractory crust. The results of cometary nucleus simulation show that at constant insolation energy the crust thickness is proportional to the square root of the insolation time and the ice sublimation rate is inversely proportional to the crust thickness. From laboratory experiments resulted the thermal regime, the gas productivity of the nucleus, covering of the nucleus by the crust, and the tempo of evolution of a short-period comet into the asteroid-like body studied.


1999 ◽  
Vol 173 ◽  
pp. 327-338 ◽  
Author(s):  
J.A. Fernández ◽  
T. Gallardo

AbstractThe Oort cloud probably is the source of Halley-type (HT) comets and perhaps of some Jupiter-family (JF) comets. The process of capture of Oort cloud comets into HT comets by planetary perturbations and its efficiency are very important problems in comet ary dynamics. A small fraction of comets coming from the Oort cloud − of about 10−2− are found to become HT comets (orbital periods < 200 yr). The steady-state population of HT comets is a complex function of the influx rate of new comets, the probability of capture and their physical lifetimes. From the discovery rate of active HT comets, their total population can be estimated to be of a few hundreds for perihelion distancesq <2 AU. Randomly-oriented LP comets captured into short-period orbits (orbital periods < 20 yr) show dynamical properties that do not match the observed properties of JF comets, in particular the distribution of their orbital inclinations, so Oort cloud comets can be ruled out as a suitable source for most JF comets. The scope of this presentation is to review the capture process of new comets into HT and short-period orbits, including the possibility that some of them may become sungrazers during their dynamical evolution.


1999 ◽  
Vol 173 ◽  
pp. 289-293 ◽  
Author(s):  
J.R. Donnison ◽  
L.I. Pettit

AbstractA Pareto distribution was used to model the magnitude data for short-period comets up to 1988. It was found using exponential probability plots that the brightness did not vary with period and that the cut-off point previously adopted can be supported statistically. Examination of the diameters of Trans-Neptunian bodies showed that a power law does not adequately fit the limited data available.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


Sign in / Sign up

Export Citation Format

Share Document