scholarly journals Altitudinal responses of the auroral E-region neutral wind to substorm events

2021 ◽  
Author(s):  
Weijia Zhan ◽  
Stephen Kaeppler
Keyword(s):  
2021 ◽  
Author(s):  
Christoph Jacobi ◽  
Kanykei Kandieva ◽  
Christina Arras

<p>In the lower ionospheric E region, shallow regions of high electron density are found, which are called sporadic E (ES) layers. ES layers consist of thin clouds of accumulated ions. They occur mainly at middle latitudes, and they are most frequently found during the summer season. ES are generally formed at heights between 90 and 120 km. At midlatitudes, their occurrence can be described through the wind shear theory. According to this theory, ES formation is due to interaction between the metallic ion concentration, the Earth’s magnetic field, and the vertical shear of the neutral wind. Here, we analyze ES occurrence rates (OR) obtained from ionospheric radio occultation measurements by the FORMOSAT-3/COSMIC constellation. To derive information on ES from RO, we use the Signal-to-Noise ratio (SNR) profiles of the GPS L1 phase measurements. If large SNR standard deviation values occur that are concentrated within a layer of less than 10 km thickness, we assume that the respective SNR profile disturbance is owing to an ES layer.</p><p>Midlatitude ES are found to be mainly connected with a migrating diurnal and semidiurnal component. Especially at high latitudes of the southern hemisphere, nonmigrating components such as a diurnal westward wave 2 and a semidiurnal westward wave 1 are also visible. Near the equator, a strong diurnal eastward wavenumber 3 component and a semidiurnal eastward wavenumber 2 component are found in summer and autumn. Terdiurnal and quarterdiurnal components are weaker than the diurnal and semidiurnal ones. We discuss seasonal and global distributions of migrating and nonmigrating components, and their relation to neutral wind shear derived from ground-based observations and numerical modeling.</p>


2000 ◽  
Vol 18 (9) ◽  
pp. 1182-1196 ◽  
Author(s):  
M. Voiculescu ◽  
C. Haldoupis ◽  
D. Pancheva ◽  
M. Ignat ◽  
K. Schlegel ◽  
...  

Abstract. Measurements of midlatitude E region coherent backscatter obtained during four summers with SESCAT, a 50 MHz Doppler system operating in Crete, Greece, and concurrent ionosonde recordings from the same ionospheric volume obtained with a CADI for one of these summers, are used to analyse the long-term variability in echo and Es occurrence. Echo and Es layer occurrences, computed in percent of time over a 12-h nighttime interval, take the form of time sequences. Linear power spectrum analysis shows that there are dominant spectral peaks in the range of 2–9 days, the most commonly observed periods appearing in two preferential bands, of 2–3 days and 4–7 days. No connection with geomagnetic activity was found. The characteristics of these periodicities compare well with similar properties of planetary waves, which suggests the possibility that planetary waves are responsible for the observed long-term periodicities. These findings indicate also a likely close relation between planetary wave (PW) activity and the well known but not well understood seasonal Es dependence. To test the PW postulation, we used simultaneous neutral wind data from the mesopause region around 95 km, measured from Collm, Germany. Direct comparison of the long-term periodicities in echo and Es layer occurrence with those in the neutral wind show some reasonable agreement. This new evidence, although not fully conclusive, is the first direct indication in favour of a planetary wave role on the unstable midlatitude E region ionosphere. Our results suggest that planetary waves observation is a viable option and a new element into the physics of midlatitude Es layers that needs to be considered and investigated.Key words: Ionosphere (ionosphere irregularities; mid-latitude ionosphere) – Meteorology and atmospheric dynamics (waves and tides)


2002 ◽  
Vol 20 (8) ◽  
pp. 1193-1201 ◽  
Author(s):  
S. Shalimov ◽  
C. Haldoupis

Abstract. Recently, Shalimov et al. (1999) proposed a new mechanism for large-scale accumulation of long-lived metallic ions in the mid-latitude ionosphere driven by planetary waves in the lower thermosphere. In this mechanism, the combined action of frictional and horizontal magnetic field forces at E-region altitudes causes the plasma to converge and accumulate in large areas of positive neutral wind vorticity within a propagating planetary wave. The present paper provides a theoretical formulation for this mechanism by modelling both horizontal and vertical plasma transport effects within a planetary wave vortex, of cyclonic neutral wind. Non-steady-state numerical solutions of the ion continuity equation show that the proposed accumulation process can enhance the ionization significantly inside the planetary wave vortex but its efficiency depends strongly on altitude, whereas on the other hand, it can be complicated by vertical plasma motions. The latter, which are driven by the same planetary wave wind field under the action of the vertical Lorentz force and meridional wind forcing along the magnetic field lines, can lead to either plasma compressions or depletions, depending on the prevailing wind direction. We conclude that, for shorter times, vertical plasma transport may act constructively to the horizontal gathering process to produce considerable E-region plasma accumulation over large sectors of a planetary wave vortex of cyclonic winds.Key words. Ionosphere (ionosphere-atmosphere interactions; mid-latitude ionosphere; sporadic E-layers) – Meteorology and atmospheric dynamics (waves and tides)


2005 ◽  
Vol 110 (A4) ◽  
Author(s):  
R. L. Bishop ◽  
G. D. Earle ◽  
M. F. Larsen ◽  
C. M. Swenson ◽  
C. G. Carlson ◽  
...  

2004 ◽  
Vol 22 (11) ◽  
pp. 3789-3798 ◽  
Author(s):  
G. C. Hussey ◽  
C. Haldoupis ◽  
A. Bourdillon ◽  
J. Delloue ◽  
J. T. Wiensz

Abstract. In the mid-latitude E-region there is now evidence suggesting that neutral winds play a significant role in driving the local plasma instabilities and electrodynamics inside sporadicE layers. Neutral winds can be inferred from coherent radar backscatter measurements of the range-/azimuth-time-intensity (RTI/ATI) striations of quasi-periodic (QP) echoes, or from radar interferometer/imaging observations. In addition, neutral winds in the E-region can be estimated from angle-of-arrival ionosonde measurements of sporadic-E layers. In the present paper we analyse concurrent ionosonde and HF coherent backscatter observations obtained when a Canadian Advanced Digital Ionosonde (CADI) was operated under a portion of the field-of-view of the Valensole high frequency (HF) radar. The Valensole radar, a mid-latitude radar located in the south of France with a large azimuthal scanning capability of 82° (24° E to 58° W), was used to deduce zonal bulk motions of QP echoing regions using ATI analysis. The CADI was used to measure angle-of-arrival information in two orthogonal horizontal directions and thus derive the motion of sporadic-E patches drifting with the neutral wind. This paper compares the neutral wind drifts of the unstable sporadic-E patches as determined by the two instruments. The CADI measurements show a predominantly westward aligned motion, but the measured zonal drifts are underestimated relative to those observed with the Valensole radar.


Sign in / Sign up

Export Citation Format

Share Document