scholarly journals A Scaling Relation Between the Moment Release due to Aseismic Motion and the Injected Volume of Fluid

2021 ◽  
Author(s):  
Alexis Sáez ◽  
Brice Lecampion
Author(s):  
Tim Bunnik ◽  
Bas Buchner ◽  
Arthur Veldman

Existing simulation methods are not able to determine in detail the wave loads on and the motions of a complex subsea structure when it is passing through the splash zone. To determine these loads and motions, model tests are necessary. Otherwise only simplified formulations or empirical relations for added mass and damping can be used. The improved Volume Of Fluid (iVOF) method presented in this paper is capable of predicting the behaviour of a subsea structure in the splash zone. The simulated flow around and through the structure looks very realistic and shows a strong resemblance with observations from model tests. The quantitative comparison of the load variations in the hoist wire of the subsea structure shows that the total load levels and dynamics of the subsea structure are well predicted. This good comparison shows the potential of the improved Volume Of Fluid (iVOF) method for the simulation of the behaviour of subsea structures in the splash zone. However, significant further development is needed before long simulations in irregular waves can be carried out. At the moment, the method is limited to short runs (regular waves) because of the long simulation times required at the moment.


2019 ◽  
Vol 46 (22) ◽  
pp. 12805-12814 ◽  
Author(s):  
Kjetil Thøgersen ◽  
Henrik Andersen Sveinsson ◽  
Julien Scheibert ◽  
François Renard ◽  
Anders Malthe‐Sørenssen
Keyword(s):  

2021 ◽  
Vol 7 (6) ◽  
Author(s):  
N. Niyazov ◽  
N. Dzhamankizov ◽  
A. Asanov ◽  
Yu. Ismanov

The article discusses a mathematical model of a power impulse device, which allows you to select the characteristics of the ejected liquid jet, such as the velocity at the moment of ejection, the pressure created in the nozzle of the power impulse device, etc., by changing the parameters of the device. A feature of the proposed mathematical model, which significantly distinguishes it from the previously considered models, is that the model was considered for the case of unsteady motion. This state of the medium in a power impulse device is the most characteristic, therefore the results obtained are more general. It is shown that, in contrast to the steady motion of a liquid, in the case of unsteady motion, an additional term appears, which can be defined as a head having an inertial character. It can be seen from the proposed mathematical model that the presence of an inertial head leads to the appearance of a flow deceleration effect, which, in turn, leads to an increase in the total liquid head in the direction of the flow. The pressure generated in the barrel acts against the direction of the hydraulic resistance. All of the above is applicable only for a certain moment in time or for the case when the acceleration of the fluid is constant. If the acceleration changes, then the action of the heads along the fluid flow is a function of time. This circumstance makes it possible to apply the result obtained with unsteady motion to create devices that form a high-pressure jet. A distinctive feature of the considered model is that it analyzes the behavior of the fluid in the power impulse device for two cases: 1. the volume of fluid in the barrel of the power impulse unit is greater than the volume of the nozzle; 2. the volume of fluid in the barrel is less than or equal to the volume of the nozzle. The results of the analysis showed that in the first case, the initial velocity of liquid ejection significantly exceeds this velocity in the second case. That is, it is the first case that is of practical importance.


2019 ◽  
Author(s):  
Kjetil Thøgersen ◽  
Henrik Sveinsson ◽  
Julien Scheibert ◽  
Francois Renard ◽  
Anders Malthe-Sørenssen
Keyword(s):  

Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


Author(s):  
Burton B. Silver

Sectioned tissue rarely indicates evidence of what is probably a highly dynamic state of activity in mitochondria which have been reported to undergo a variety of movements such as streaming, divisions and coalescence. Recently, mitochondria from the rat anterior pituitary have been fixed in a variety of configurations which suggest that conformational changes were occurring at the moment of fixation. Pinocytotic-like vacuoles which may be taking in or expelling materials from the surrounding cell medium, appear to be forming in some of the mitochondria. In some cases, pores extend into the matrix of the mitochondria. In other forms, the remains of what seems to be pinched off vacuoles are evident in the mitochondrial interior. Dense materials, resembling secretory droplets, appear at the junction of the pores and the cytoplasm. The droplets are similar to the secretory materials commonly identified in electron micrographs of the anterior pituitary.


Author(s):  
J. S. Wall

The forte of the Scanning transmission Electron Microscope (STEM) is high resolution imaging with high contrast on thin specimens, as demonstrated by visualization of single heavy atoms. of equal importance for biology is the efficient utilization of all available signals, permitting low dose imaging of unstained single molecules such as DNA.Our work at Brookhaven has concentrated on: 1) design and construction of instruments optimized for a narrow range of biological applications and 2) use of such instruments in a very active user/collaborator program. Therefore our program is highly interactive with a strong emphasis on producing results which are interpretable with a high level of confidence.The major challenge we face at the moment is specimen preparation. The resolution of the STEM is better than 2.5 A, but measurements of resolution vs. dose level off at a resolution of 20 A at a dose of 10 el/A2 on a well-behaved biological specimen such as TMV (tobacco mosaic virus). To track down this problem we are examining all aspects of specimen preparation: purification of biological material, deposition on the thin film substrate, washing, fast freezing and freeze drying. As we attempt to improve our equipment/technique, we use image analysis of TMV internal controls included in all STEM samples as a monitor sensitive enough to detect even a few percent improvement. For delicate specimens, carbon films can be very harsh-leading to disruption of the sample. Therefore we are developing conducting polymer films as alternative substrates, as described elsewhere in these Proceedings. For specimen preparation studies, we have identified (from our user/collaborator program ) a variety of “canary” specimens, each uniquely sensitive to one particular aspect of sample preparation, so we can attempt to separate the variables involved.


Author(s):  
Oscar D. Guillamondegui

Traumatic brain injury (TBI) is a serious epidemic in the United States. It affects patients of all ages, race, and socioeconomic status (SES). The current care of these patients typically manifests after sequelae have been identified after discharge from the hospital, long after the inciting event. The purpose of this article is to introduce the concept of identification and management of the TBI patient from the moment of injury through long-term care as a multidisciplinary approach. By promoting an awareness of the issues that develop around the acutely injured brain and linking them to long-term outcomes, the trauma team can initiate care early to alter the effect on the patient, family, and community. Hopefully, by describing the care afforded at a trauma center and by a multidisciplinary team, we can bring a better understanding to the armamentarium of methods utilized to treat the difficult population of TBI patients.


1981 ◽  
Vol 26 (8) ◽  
pp. 652-652
Author(s):  
Morris J. Paulson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document