Soil aggregates and pore changes under raindrop splash

2021 ◽  
Author(s):  
Guanglu Li ◽  
Yangyang Ren ◽  
Gangan Ma ◽  
Mingxi Yang ◽  
Yu Fu ◽  
...  
CATENA ◽  
2020 ◽  
Vol 185 ◽  
pp. 104342
Author(s):  
Yu Fu ◽  
Guanglu Li ◽  
Tenghui Zheng ◽  
Yingsong Zhao ◽  
Mingxi Yang

Water SA ◽  
2019 ◽  
Vol 45 (1 January) ◽  
Author(s):  
Cosmas Parwada ◽  
Johan Van Tol

Organic litter stabilizes soil particles against the raindrop splash effect. To date, limited research has critically examined the effects of litter quality on soil aggregate detachment and soil organic carbon loss by raindrop splash impact. A study was conducted to determine the effects of different litter sources on quantity of splashed sediments and soil organic carbon (SOC) loss under simulated rainstorm patterns. Soils from seven sieved (< 0.25 mm) horizons mixed with either high-quality Vachellia karroo leaf (C/N = 23.8) and/or low-quality Zea mays stover litter (C/N = 37.4) were incubated in a laboratory for 30 weeks. Splashed sediments and SOC were measured at 1, 3, 8, 14, 23 and 30 weeks of incubation for each soil at 360 mm/h simulated rainfall intensity applied as either single 8-min rainstorm (SR) or 4 × 2-min intermittent rainstorms (IR) separated by a 72-h drying period. Organic litter significantly (P < 0.05) reduced the splashed sediments up to 8 and 14 weeks under IR and SR storms, respectively, and thereafter gradually lost its stabilizing effect on soil aggregates. In order to maintain low quantities of splashed sediments, fresh litter has to be re-applied after this stage. Generally, 13% and 25% more sediments were splashed under IR than SR at 1, 3 and 30, and 8, 14 and 23 weeks after incubation, respectively. Litter quality effect on splash sediments varied across soil horizons but were the same within a soil horizon. Soil horizons with more clay than sand particles had lower quantities of sediments. The SOC loss was influenced by the initial SOC content and primary particle size distribution. Rainstorm pattern and initial SOC content were the main factors that influenced SOC loss. However, more rainstorm patterns should be investigated for these soils.


1997 ◽  
Vol 48 (4) ◽  
pp. 643-650 ◽  
Author(s):  
J. W. CRAWFORD ◽  
S. VERRALL ◽  
I. M. YOUNG

2003 ◽  
Vol 67 (2) ◽  
pp. 677-677
Author(s):  
John B. Cliff ◽  
Peter J. Bottomley ◽  
Roy Haggerty ◽  
David D. Myrold

2016 ◽  
Vol 568 ◽  
pp. 52-56 ◽  
Author(s):  
Junjun Wu ◽  
Qian Zhang ◽  
Fan Yang ◽  
Yao lei ◽  
Quanfa Zhang ◽  
...  

2021 ◽  
Vol 773 ◽  
pp. 145069
Author(s):  
Xiang Xiong ◽  
Yanfang Xing ◽  
Jinzhi He ◽  
Li Wang ◽  
Zhenzhen Shen ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 1541
Author(s):  
Xiaolin Shen ◽  
Lili Wang ◽  
Qichen Yang ◽  
Weiming Xiu ◽  
Gang Li ◽  
...  

Our study aimed to provide a scientific basis for an appropriate tillage management of wheat-maize rotation system, which is beneficial to the sustainable development of agriculture in the fluvo-aquic soil areas in China. Four tillage treatments were investigated after maize harvest, including rotary tillage with straw returning (RT), deep ploughing with straw returning (DP), subsoiling with straw returning (SS), and no tillage with straw mulching (NT). We evaluated soil organic carbon (SOC), dissolved organic carbon (DOC), permanganate oxidizable carbon (POXC), microbial biomass carbon (MBC), and particulate organic carbon (POC) in bulk soil and soil aggregates with five particle sizes (>5 mm, 5–2 mm, 2–1 mm, 1–0.25 mm, and <0.25 mm) under different tillage managements. Results showed that compared with RT treatment, NT treatment not only increased soil aggregate stability, but also enhanced SOC, DOC, and POC contents, especially those in large size macroaggregates. DP treatment also showed positive effects on soil aggregate stability and labile carbon fractions (DOC and POXC). Consequently, we suggest that no tillage or deep ploughing, rather than rotary tillage, could be better tillage management considering carbon storage. Meanwhile, we implied that mass fractal dimension (Dm) and POXC could be effective indicators of soil quality, as affected by tillage managements.


2021 ◽  
Vol 13 (2) ◽  
pp. 890
Author(s):  
Jie Zhang ◽  
Yaojun Liu ◽  
Taihui Zheng ◽  
Xiaomin Zhao ◽  
Hongguang Liu ◽  
...  

Sloping farmland is prevalent in hilly red soil areas of South China. Improper tillage patterns induce decreased soil organic matter, soil aggregate breakdown, and nutrient imbalance, thereby restricting crop production. However, the stoichiometric characteristics could reflect the nutrient availability which was mostly studied on bulk soil. The stoichiometric characteristics of soil aggregates with multiple functions in farmlands has rarely been studied. The study was to reveal the impact of tillage patterns on the size distribution, nutrient levels, and stoichiometric ratios of soil aggregates after 20 years’ cultivation. Soil samples of 0–20 cm and 20–40 cm from five tillage patterns, bare-land control (BL), longitudinal-ridge tillage (LR), conventional tillage + straw mulching (CS), cross-ridge tillage (CR), and longitudinal-ridge tillage + hedgerows (LH) were collected. The elemental content (C, N and P) and soil aggregate size distribution were determined, and the stoichiometric ratios were subsequently calculated. Through our analysis and study, it was found that the nutrient content of >2 mm soil aggregates in all plots was the highest. In the hedgerow plots, >2 mm water-stable soil aggregate content was increased. Therefore, LH plots have the highest content of organic matter and nutrients. After 20 years of cultivation, stoichiometric ratio of each plot showed different changes on soil aggregates at different levels. the C:N, C:P, and N:P ratios are lower than the national average of cultivated land. Among of them, the stoichiometric ratio in the LH plot is closer to the mean and showed better water-stable aggregate enhancement. Therefore, longitudinal-ridge tillage + hedgerows can be recommended as a cultivation measure. This study provides a reference for determining appropriate tillage measures, balancing nutrient ratios, and implementing rational fertilization.


Sign in / Sign up

Export Citation Format

Share Document