scholarly journals Quantifying the Importance of Ultraviolet Radiation and Non-linear Chemistry on Surface Ozone Prediction

2022 ◽  
Author(s):  
Huifen Liang ◽  
Jason Blake Cohen
2012 ◽  
Vol 518-523 ◽  
pp. 1586-1591
Author(s):  
Hao Zhang ◽  
Ze Meng Zhao ◽  
Ahmet Palazoglu ◽  
Wei Sun

Surface ozone in the air boundary layer is one of the most harmful air pollutants produced by photochemical reaction between nitrogen oxides and volatile hydrocarbons, which causes great damage to human beings and environment. The prediction of surface ozone levels plays an important role in the control and the reduction of air pollutants. As model-driven statistical prediction models, hidden Markov Models (HMMs) are rich in mathematical structure and work well in many important applications. Due to the complex structure of HMM, long observation sequences would increase computational load by geometric ratio. In order to reduce training time, wavelet decomposition is used to compress the original observations into shorter ones. During compression step, observation sequences compressed by different wavelet basis functions keep different information content. This may have impact on prediction results. In this paper, ozone prediction performance of HMM based on different wavelet basis functions are discussed. Shannon entropy is employed to measure how much information content is kept in the new sequence compared to the original one. Data from Houston Metropolitan Area, TX are used in this paper. Results show that wavelet basis functions used in data compression step can affect the HMM model performance significantly. The new sequence with the maximum Shannon entropy generates the best prediction result.


1994 ◽  
Vol 44 (3-4) ◽  
pp. 233-242 ◽  
Author(s):  
C. Varotsos ◽  
P. Kalabokas ◽  
A. Vlassi ◽  
A. Katsambas ◽  
J. Stratigos ◽  
...  

2009 ◽  
Vol 36 (3) ◽  
pp. 6389-6402 ◽  
Author(s):  
Zekai Şen ◽  
Abdüsselam Altunkaynak ◽  
Kadir Alp

2008 ◽  
Vol 8 (2) ◽  
pp. 425-430 ◽  
Author(s):  
C. Tzanis ◽  
C. Varotsos ◽  
L. Viras

Abstract. In this study the variations in the surface ozone concentration, the solar ultraviolet radiation and the meteorological parameters at the ground before, during and after the total solar eclipse of 29 March 2006 have been examined. This analysis is based on the measurements performed at four stations located in the greater Athens basin in Greece. The experimental data demonstrated that the solar eclipse phenomenon affects the surface ozone concentration as well as the temperature, the relative humidity and the wind speed near the ground. The decrease in the surface ozone concentration that observed after the beginning of the eclipse event lasted almost two hours, probably due to the decreased efficiency of the photochemical ozone formation. The reduction of the solar ultraviolet radiation at 312 and 365 nm reached 97% and 93% respectively, while the air temperature dropped, the relative humidity increased and the wind speed decreased.


2015 ◽  
Vol 8 (5) ◽  
pp. 1383-1394 ◽  
Author(s):  
B. H. Czader ◽  
P. Percell ◽  
D. Byun ◽  
S. Kim ◽  
Y. Choi

Abstract. A hybrid Lagrangian–Eulerian based modeling tool has been developed using the Eulerian framework of the Community Multiscale Air Quality (CMAQ) model. It is a moving nest that utilizes saved original CMAQ simulation results to provide boundary conditions, initial conditions, as well as emissions and meteorological parameters necessary for a simulation. Given that these files are available, this tool can run independently of the CMAQ whole domain simulation, and it is designed to simulate source–receptor relationships upon changes in emissions. In this tool, the original CMAQ's horizontal domain is reduced to a small sub-domain that follows a trajectory defined by the mean mixed-layer wind. It has the same vertical structure and physical and chemical interactions as CMAQ except advection calculation. The advantage of this tool compared to other Lagrangian models is its capability of utilizing realistic boundary conditions that change with space and time as well as detailed chemistry treatment. The correctness of the algorithms and the overall performance was evaluated against CMAQ simulation results. Its performance depends on the atmospheric conditions occurring during the simulation period, with the comparisons being most similar to CMAQ results under uniform wind conditions. The mean bias for surface ozone mixing ratios varies between −0.03 and −0.78 ppbV and the slope is between 0.99 and 1.01 for different analyzed cases. For complicated meteorological conditions, such as wind circulation, the simulated mixing ratios deviate from CMAQ values as a result of the Lagrangian approach of using mean wind for its movement, but are still close, with the mean bias for ozone varying between 0.07 and −4.29 ppbV and the slope varying between 0.95 and 1.06 for different analyzed cases. For historical reasons, this hybrid Lagrangian–Eulerian based tool is named the Screening Trajectory Ozone Prediction System (STOPS), but its use is not limited to ozone prediction as, similarly to CMAQ, it can simulate concentrations of many species, including particulate matter and some toxic compounds, such as formaldehyde and 1,3-butadiene.


2020 ◽  
Author(s):  
Amir H. Souri ◽  
Caroline R. Nowlan ◽  
Gonzalo González Abad ◽  
Lei Zhu ◽  
Donald R. Blake ◽  
...  

Abstract. The absence of up-to-date emissions has been a major impediment to accurately simulate aspects of atmospheric chemistry, and to precisely quantify the impact of changes of emissions on air pollution. Hence, a non-linear joint analytical inversion (Gauss–Newton method) of both volatile organic compounds (VOC) and nitrogen oxides (NOx) emissions is made by exploiting the Smithsonian Astrophysical Observatory (SAO) Ozone Mapping and Profile Suite Nadir Mapper (OMPS-NM) formaldehyde (HCHO) and the National Aeronautics and Space Administration (NASA) Ozone Monitoring Instrument (OMI) tropospheric nitrogen dioxide (NO2) retrievals during the Korea-United States Air Quality (KORUS-AQ) campaign over East Asia in May–June 2016. Effects of the chemical feedback of NOx and VOCs on both NO2 and HCHO are implicitly included through iteratively optimizing the inversion. Emissions estimates are greatly improved (averaging kernels > 0.8) over medium- to high-emitting areas such as cities and dense vegetation. The amount of total NOx emissions is mainly dictated by values reported in the MIX-Asia 2010 inventory. After the inversion we conclude a decline in the emissions (before, after, change) for China (87.94 ± 44.09 Gg/day, 68.00 ± 15.94 Gg/day, −23 %), North China Plain (NCP) (27.96 ± 13.49 Gg/day, 19.05 ± 2.50 Gg/day, −32 %), Pearl River Delta (PRD) (4.23 ± 1.78 Gg/day, 2.70 ± 0.32 Gg/day, −36 %), Yangtze River Delta (YRD) (9.84 ± 4.68 Gg/day, 5.77 ± 0.51 Gg/day, −41 %), Taiwan (1.26 ± 0.57 Gg/day, 0.97 ± 0.33 Gg/day, −23 %), and Malaysia (2.89 ± 2.77 Gg/day, 2.25 ± 1.34 Gg/day, −22 %), all of which have effectively implemented various stringent regulations. In contrast, South Korea (2.71 ± 1.34 Gg/day, 2.95 ± 0.58 Gg/day, +9 %) and Japan (3.53 ± 1.71 Gg/day, 3.96 ± 1.04 Gg/day, +12 %) experience an increase in NOx emissions potentially due to risen number of diesel vehicles and new thermal power plants. We revisit the well-documented positive bias of the model in terms of biogenic VOC emissions in the tropics. The inversion, however, suggests a larger growth of VOC (mainly anthropogenic) over NCP (25 %) than previously reported (6 %) relative to 2010. The spatial variation in both magnitude and sign of NOx and VOC emissions results in non-linear responses of ozone production/loss. Due to simultaneous decrease/increase of NOx/VOC over NCP and YRD, we observe an ~ 53 % reduction in the ratio of the chemical loss of NOx (LNOx) to the chemical loss of ROx (RO2 + HO2) transitioning toward NOx-sensitive regimes, which in turn, reduces/increases the afternoon chemical loss/production of ozone through NO2 + OH (−0.42 ppbv hr−1)/HO2 (and RO2) + NO (+0.31 ppbv hr−1). Conversely, a combined decrease in NOx and VOC emissions in Taiwan, Malaysia, and the southern China suppresses the formation of ozone. Ultimately, model simulations indicate enhancements of maximum daily 8-hour average (MDA8) surface ozone over China (0.62 ppbv), NCP (4.56 ppbv), and YRD (5.25 ppbv) due to the non-linear ozone chemistry, suggesting that emissions standards should be extended to regulate VOCs to be able to curb ozone production rates. Taiwan, Malaysia, and PRD stand out as the regions undergoing lower MDA8 ozone levels resulting from the NOx reductions occurring predominantly in NOx-sensitive regimes.


Sign in / Sign up

Export Citation Format

Share Document