Assessment of the Microplastics Size Range and Ingestion Intensity by Gmelinoides fasciatus Stebbing, an Invasive Species of Lake Onego

Author(s):  
Nataliia Michailovna Kalinkina ◽  
Mikhail Borisovich Zobkov ◽  
Maria Valentinovna Zobkova ◽  
Natalia Evgenievna Galakhina
Author(s):  
E.J. Jenkins ◽  
D.S. Tucker ◽  
J.J. Hren

The size range of mineral and ceramic particles of one to a few microns is awkward to prepare for examination by TEM. Electrons can be transmitted through smaller particles directly and larger particles can be thinned by crushing and dispersion onto a substrate or by embedding in a film followed by ion milling. Attempts at dispersion onto a thin film substrate often result in particle aggregation by van der Waals attraction. In the present work we studied 1-10 μm diameter Al2O3 spheres which were transformed from the amprphous state to the stable α phase.After the appropriate heat treatment, the spherical powders were embedded in as high a density as practicable in a hard EPON, and then microtomed into thin sections. There are several advantages to this method. Obviously, this is a rapid and convenient means to study the microstructure of serial slices. EDS, ELS, and diffraction studies are also considerably more informative. Furthermore, confidence in sampling reliability is considerably enhanced. The major negative feature is some distortion of the microstructure inherent to the microtoming operation; however, this appears to have been surprisingly small. The details of the method and some typical results follow.


Author(s):  
A. Gómez ◽  
P. Schabes-Retchkiman ◽  
M. José-Yacamán ◽  
T. Ocaña

The splitting effect that is observed in microdiffraction pat-terns of small metallic particles in the size range 50-500 Å can be understood using the dynamical theory of electron diffraction for the case of a crystal containing a finite wedge. For the experimental data we refer to part I of this work in these proceedings.


Author(s):  
M. Jose Yacaman

In the Study of small metal particles the shape is a very Important parameter. Using electron microscopy Ino and Owaga(l) have studied the shape of twinned particles of gold. In that work electron diffraction and contrast (dark field) experiments were used to produce models of a crystal particle. In this work we report a method which can give direct information about the shape of an small metal particle in the amstrong- size range with high resolution. The diffraction pattern of a sample containing small metal particles contains in general several systematic and non- systematic reflections and a two-beam condition can not be used in practice. However a N-beam condition produces a reduced extinction distance. On the other hand if a beam is out of the bragg condition the effective extinction distance is even more reduced.


Author(s):  
Karen A. Katrinak ◽  
David W. Brekke ◽  
John P. Hurley

Individual-particle analysis is well established as an alternative to bulk analysis of airborne particulates. It yields size and chemical data on a particle-by-particle basis, information that is critical in predicting the behavior of air pollutants. Individual-particle analysis is especially important for particles with diameter < 1 μm, because particles in this size range have a disproportionately large effect on atmospheric visibility and health.


Author(s):  
Linda Sicko-Goad

Although the use of electron microscopy and its varied methodologies is not usually associated with ecological studies, the types of species specific information that can be generated by these techniques are often quite useful in predicting long-term ecosystem effects. The utility of these techniques is especially apparent when one considers both the size range of particles found in the aquatic environment and the complexity of the phytoplankton assemblages.The size range and character of organisms found in the aquatic environment are dependent upon a variety of physical parameters that include sampling depth, location, and time of year. In the winter months, all the Laurentian Great Lakes are uniformly mixed and homothermous in the range of 1.1 to 1.7°C. During this time phytoplankton productivity is quite low.


EDIS ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 7
Author(s):  
Demian F. Gomez ◽  
Jiri Hulcr ◽  
Daniel Carrillo

Invasive species, those that are nonnative and cause economic damage, are one of the main threats to ecosystems around the world. Ambrosia beetles are some of the most common invasive insects. Currently, severe economic impacts have been increasingly reported for all the invasive shot hole borers in South Africa, California, Israel, and throughout Asia. This 7-page fact sheet written by Demian F. Gomez, Jiri Hulcr, and Daniel Carrillo and published by the School of Forest Resources and Conservation describes shot hole borers and their biology and hosts and lists some strategies for prevention and control of these pests. http://edis.ifas.ufl.edu/fr422


Sign in / Sign up

Export Citation Format

Share Document