scholarly journals Male-biased gene expression resolves sexual conflict through the evolution of sex-specific genetic architecture

2018 ◽  
Vol 2 (2) ◽  
pp. 52-61 ◽  
Author(s):  
Alison E. Wright ◽  
Matteo Fumagalli ◽  
Christopher R. Cooney ◽  
Natasha I. Bloch ◽  
Filipe G. Vieira ◽  
...  
2018 ◽  
Author(s):  
Yizhen Zhong ◽  
Minoli Perera ◽  
Eric R. Gamazon

AbstractBackgroundUnderstanding the nature of the genetic regulation of gene expression promises to advance our understanding of the genetic basis of disease. However, the methodological impact of use of local ancestry on high-dimensional omics analyses, including most prominently expression quantitative trait loci (eQTL) mapping and trait heritability estimation, in admixed populations remains critically underexplored.ResultsHere we develop a statistical framework that characterizes the relationships among the determinants of the genetic architecture of an important class of molecular traits. We estimate the trait variance explained by ancestry using local admixture relatedness between individuals. Using National Institute of General Medical Sciences (NIGMS) and Genotype-Tissue Expression (GTEx) datasets, we show that use of local ancestry can substantially improve eQTL mapping and heritability estimation and characterize the sparse versus polygenic component of gene expression in admixed and multiethnic populations respectively. Using simulations of diverse genetic architectures to estimate trait heritability and the level of confounding, we show improved accuracy given individual-level data and evaluate a summary statistics based approach. Furthermore, we provide a computationally efficient approach to local ancestry analysis in eQTL mapping while increasing control of type I and type II error over traditional approaches.ConclusionOur study has important methodological implications on genetic analysis of omics traits across a range of genomic contexts, from a single variant to a prioritized region to the entire genome. Our findings highlight the importance of using local ancestry to better characterize the heritability of complex traits and to more accurately map genetic associations.


2018 ◽  
Author(s):  
Sini Nagpal ◽  
Xiaoran Meng ◽  
Michael P. Epstein ◽  
Lam C. Tsoi ◽  
Matthew Patrick ◽  
...  

AbstractThe transcriptome-wide association studies (TWAS) that test for association between the study trait and the imputed gene expression levels from cis-acting expression quantitative trait loci (cis-eQTL) genotypes have successfully enhanced the discovery of genetic risk loci for complex traits. By using the gene expression imputation models fitted from reference datasets that have both genetic and transcriptomic data, TWAS facilitates gene-based tests with GWAS data while accounting for the reference transcriptomic data. The existing TWAS tools like PrediXcan and FUSION use parametric imputation models that have limitations for modeling the complex genetic architecture of transcriptomic data. Therefore, we propose an improved Bayesian method that assumes a data-driven nonparametric prior to impute gene expression. Our method is general and flexible and includes both the parametric imputation models used by PrediXcan and FUSION as special cases. Our simulation studies showed that the nonparametric Bayesian model improved both imputation R2 for transcriptomic data and the TWAS power over PrediXcan. In real applications, our nonparametric Bayesian method fitted transcriptomic imputation models for 2X number of genes with 1.7X average regression R2 over PrediXcan, thus improving the power of follow-up TWAS. Hence, the nonparametric Bayesian model is preferred for modeling the complex genetic architecture of transcriptomes and is expected to enhance transcriptome-integrated genetic association studies. We implement our Bayesian approach in a convenient software tool “TIGAR” (Transcriptome-Integrated Genetic Association Resource), which imputes transcriptomic data and performs subsequent TWAS using individual-level or summary-level GWAS data.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0134865 ◽  
Author(s):  
Matthew N. Davies ◽  
Serena Verdi ◽  
Andrea Burri ◽  
Maciej Trzaskowski ◽  
Minyoung Lee ◽  
...  

Author(s):  
Ryan D. Hernandez ◽  
Lawrence H. Uricchio ◽  
Kevin Hartman ◽  
Chun Ye ◽  
Andrew Dahl ◽  
...  

2007 ◽  
Vol 8 (9) ◽  
pp. 689-698 ◽  
Author(s):  
Hans Ellegren ◽  
John Parsch

2020 ◽  
Author(s):  
Wen Huang ◽  
Mary Anna Carbone ◽  
Richard F. Lyman ◽  
Robert H. H. Anholt ◽  
Trudy F. C. Mackay

AbstractThe genetics of phenotypic responses to changing environments remains elusive. Using whole genome quantitative gene expression as a model, we studied how the genetic architecture of regulatory variation in gene expression changed in a population of fully sequenced inbred Drosophila melanogaster strains when flies developed at different environments (25 °C and 18 °C). We found a substantial fraction of the transcriptome exhibited genotype by environment interaction, implicating environmentally plastic genetic architecture of gene expression. Genetic variance in expression increased at 18 °C relative to 25 °C for most genes that had a change in genetic variance. Although the majority of expression quantitative trait loci (eQTLs) for the gene expression traits in the two environments were shared and had similar effects, analysis of the environment-specific eQTLs revealed enrichment of binding sites for two transcription factors. Finally, although genotype by environment interaction in gene expression could potentially disrupt genetic networks, the co-expression networks were highly conserved across environments. Genes with higher network connectivity were under stronger stabilizing selection, suggesting that stabilizing selection on expression plays an important role in promoting network robustness.


2015 ◽  
Author(s):  
Jenny Tung ◽  
Xiang Zhou ◽  
Susan C Alberts ◽  
Matthew Stephens ◽  
Yoav Gilad

Sign in / Sign up

Export Citation Format

Share Document