Effect of glass fiber-reinforced polymer and epoxy injection on compressive strength of elevated temperature damaged concrete

2012 ◽  
Vol 37 (2) ◽  
pp. 100-113
Author(s):  
Ramazan Demirboğa ◽  
Mehmet Akif Kaygusuz ◽  
Rıza Polat
2019 ◽  
Vol 10 (4) ◽  
pp. 510-538 ◽  
Author(s):  
Mohamed Abdel-Kader ◽  
Ahmed Fouda

In this article, the response of nine plain concrete panels to an impact of hard projectiles was examined in an experimental study. The tests were planned with an aim to observe the influence of compressive strength on the performance of concrete under impact loading. Concrete panels with compressive strengths within the range of 26 to 92 MPa subjected to impact by 23 mm hard projectile at velocities within the range of 270 to 348 m/s were studied. Also, using a glass fiber reinforced polymer sheet, as a liner on the rear face of the plain concrete panel, to strengthen the panel was examined. The experimental results indicate that strengthening concrete panel with a rear glass fiber reinforced polymer sheet showed more satisfactory performance under the impact load than increasing compressive strength of concrete. Also, the use of glass fiber reinforced polymer sheets as rear liners in addition to increasing the concrete strength showed superior performance of concrete panels against impact; it is recommended to be used in protective structures.


1994 ◽  
Vol 116 (3) ◽  
pp. 167-172 ◽  
Author(s):  
P. K. Dutta

Polymeric composites are relatively inexpensive materials of high strength, in which deformation of the matrix is used to transfer stress by means of shear traction at the fiber-matrix interface to the embedded high-strength fibers. At low temperatures, complex stresses are set up within the microstructure of the material as a result of matrix stiffening and mismatch of thermal expansion coefficients of the constituents of the composites. These stresses in turn affect the strength and deformation characteristics of the composites. This is demonstrated by compression testing of an unidirectional glass-fiber-reinforced polymer composite at room and low temperatures. The increase of compressive strength matched the analytical prediction of strength increase modeled from the consideration of increase in matrix stiffness and thermal residual stresses at low temperatures. Additional compression tests performed on a batch of low-temperature thermally cycled specimens confirmed the predictable reduction of brittleness due to suspected increase of microcrack density. The mode of failure characterized by definite pre-fracture yielding conforms more to Budiansky’s plastic microbuckling theory than to Rosen’s theory of elastic shear or extensional buckling.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
D. S. Vijayan ◽  
A. Mohan ◽  
J. Jebasingh Daniel ◽  
V. Gokulnath ◽  
B. Saravanan ◽  
...  

An ecofriendly fiber reinforced polymer (FRP) had been used in the last decade to enhance the short concrete column’s strength and deformation capacity. This study involves the wrapping of FRP sheets with a thickness of 3 mm and 5 mm on a short column, and then the compressive strength is determined. The rectangular columns of size 150 mm × 300 mm are used for this study, and cast under the grades of M20 and M40 are wrapped with GFRP sheets at the thickness of 3 mm and 5 mm. These results are clarified at a specific thickness of the FRP-wrapped columns. It provides a maximum axial compressive strength, and Young’s modulus gets enhanced rigorously when it is to be compared to the normal concrete. This thesis deals with experimental studies of different parameters associated with wrapped glass fiber reinforced polymer (GFRP). In M20 grade, when the 3 mm wrapped specimen and the 5 mm wrapped specimen are compared, the specimen wrapped with 5 mm increases 5.182% more than the specimen wrapped with 3 mm. In M40 grade, when the 0 mm, 3 mm, and 5 mm wrapped specimens are compared, the specimen wrapped with 5 mm increases 2.47% more than the specimen wrapped with 0 mm. The 5 mm wrapping attains the maximum strength.


2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Mohamed S. Moawad ◽  
Ahmed Fawzi

AbstractOne of the major advantages of using glass fiber-reinforced polymer bars as a replacement to the traditional steel-reinforced bars is its lightweight and high-resistant to corrosion. This research focuses on the performance of concrete beams partially/fully reinforced with glass fiber-reinforced polymer bars with 50% of GFRP bars were used to reinforce partially concrete beams at flexural zone. While 100% of GFRP bars were used to reinforce fully concrete beams at flexural and compression zones with different concrete compressive strength.This study reported the test results of 6 reinforced concrete beams with dimensions 150 × 200mm and a 1700-mm clear span length subjected to a four-point loading system. The tested beams were divided into three groups; the first one refers to the glass fiber-reinforced polymer bar effect. The second group is referring to the effect of concrete compressive strength, while the third group is referring to the effect of the GFRP bar volume ratio.Using longitudinal GFRP bars as a full or partial replacement of longitudinal steel bar reinforcement led to an increase in the failure load capacity and the average crack width, while a decrease in ductility was reported with a lower number of cracks. Increasing the concrete compressive strength is more compatible with GFRP bar reinforcement and enhanced the failure performance of beams compared with normal compressive strength concrete.


Author(s):  
D. Barton Smith ◽  
Barbara J. Frame ◽  
Lawrence M. Anovitz ◽  
Christopher Makselon

Pipelines are a practicable means for delivering large quantities of gaseous hydrogen over long distances and for distributing it as a transportation fuel at fueling stations in urban and rural settings. Glass-fiber-reinforced polymer (GFRP) pipelines are a promising alternative to the present-day use of low-alloy steel in pipelines for hydrogen transmission. GFRP pipelines offer advantages of lower capital cost and improved lifecycle performance, compared to steel pipelines. The technical challenges for adapting GRFP pipeline technology from oil and natural gas transmission, where it is in extensive service worldwide, to hydrogen transmission consists of evaluating the hydrogen compatibility of the constituent materials and composite construction, identifying the advantages and challenges of the various manufacturing methods, testing polymeric liners and pipelines to determine hydrogen permeability and leak rates, selecting options for pipeline joining technologies, establishing the necessary modifications to existing codes and standards to validate the safe and reliable implementation of the pipeline. We performed examined the technical feasibility of using a commercially available spoolable glass-fiber-reinforced polymer (GFRP) pipeline for hydrogen transmission. We used an accelerated aging process based on the Arrhenius model to screen for hydrogen-induced damage in the pipeline and in the pipeline’s constituent materials. We also measured hydrogen leakage rates in short lengths of the pipeline. The accelerated aging process involved immersing GRFP pipeline specimens in pipeline-pressure hydrogen (6.9 MPa/1000 psi) at an elevated temperature (60°C) to promote an accelerated interaction of hydrogen with the pipeline structure. To assess specific effects on the constituent materials in the pipeline, specimens of fiberglass rovings, resin matrix and liner materials were immersed together with the pipeline specimens, and specimens of all types were subjected to either a one-month or an eight-month exposure to hydrogen at the elevated temperature. At the conclusion of each exposure interval the pipeline specimens were evaluated for degradation using hydrostatic burst pressure tests to assess the overall integrity of the structure, compression tests to assess the integrity of the polymer matrix, and bend testing to assess the integrity of the laminate. The results of these tests were compared to the results obtained from identical tests performed on un-conditioned specimens from the same manufacturing run. Tensile tests and dynamic mechanical analysis were performed on multiple specimens of constituent materials. We measured the hydrogen leak rate in GFRP pipeline lined with pipeline-grade high-density polyethylene (PE-3408). The thickness of the liner was 0.526 cm and its inside diameter was 10.1 cm. The hydrogen pressurization during the leak rate measurements was 10.3 MPa (1500 psia) — the maximum recommended pressure — and all measurements were done at ambient temperatures in an air-conditioned laboratory. The pipeline was closed on each end using a steel cap with elastomer (O-ring) seals. The leak rate was calculated from the temperature-compensated pressure decay curve. Changes in pipeline volume that occurred due to pressure-induced dimensional changes in the pipeline length and circumference were measured using strain gauge sensors. These volumetric changes occurred at the earliest measurement times and diminished to near zero at the long measurement times during which the steady-state leak rate was determined. Leak rate measurements in three different lengths of pipeline yielded a leak rate was significantly lower than the predicted rate from the standard analytical model for a cylindrical vessel.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Gabriel Mansour ◽  
Panagiotis Kyratsis ◽  
Apostolos Korlos ◽  
Dimitrios Tzetzis

There are numerous engineering applications where Glass Fiber Reinforced Polymer (GFRP) composite tubes are utilized, such as desalination plants, power transmission systems, and paper mill, as well as marine, industries. Some type of machining is required for those various applications either for joining or fitting procedures. Machining of GFRP has certain difficulties that may damage the tube itself because of fiber delamination and pull out, as well as matrix deboning. Additionally, short machining tool life may be encountered while the formation of powder like chips maybe relatively hazardous. The present paper investigates the effect of process parameters for surface roughness of glass fiber-reinforced polymer composite pipes manufactured using the filament winding process. Experiments were conducted based on the high-speed turning Computer Numerical Control (CNC) machine using Poly-Crystalline Diamond (PCD) tool. The process parameters considered were cutting speed, feed, and depth of cut. Mathematical models for the surface roughness were developed based on the experimental results, and Analysis of Variance (ANOVA) has been performed with a confidence level of 95% for validation of the models.


Author(s):  
Priyadarsini Morampudi ◽  
Kiran Kumar Namala ◽  
Yeshwanth Kumar Gajjela ◽  
Majjiga Barath ◽  
Ganaparthy Prudhvi

Sign in / Sign up

Export Citation Format

Share Document