Geochronological, geochemical, and Sr–Nd–Pb–Hf isotopes of Cretaceous gneissic granite and quartz monzonite in the Tongbai Complex: Record of lower crust thickening beneath the Tongbai orogen

2021 ◽  
Author(s):  
Pan‐Pan Niu ◽  
Shao‐Yong Jiang

2020 ◽  
Vol 57 (9) ◽  
pp. 1066-1088
Author(s):  
Mimi Yang ◽  
Fufeng Zhao ◽  
Xianfan Liu ◽  
Hairuo Qing ◽  
Tsilavo Raharimahefa ◽  
...  

The Machangqing Cu–Mo (Au) deposit is located in the central part of the Jinshajiang – Red River belt in the Sanjiang orogen, which lies across the Qiangtang terrane and western Yangtze craton, southwestern China. Zircon U–Pb dating constrains that the granite porphyry and porphyritic granite emplacements occurred at 35.92 ± 0.31 Ma and 34.92 ± 0.31 Ma, respectively. The Re–Os model ages of molybdenite are 34.94 ± 0.38 Ma. The new ages presented here, along with previously published data in the region, define a short duration of potassic magmatism and mineralization from 37 Ma to 34 Ma in the Jinshajiang – Red River belt. Zircon Ce4+/Ce3+ values of the porphyritic granite and granite porphyry vary from 50.32 to 1579.20 (averaging 481.01) and 33.18 to 1511.80 (averaging 452.98), respectively, and the log(fo2) values vary from –6.66 to −23.86 and −9.88 to −25.18, respectively, which plot within the range of the fayalite–magnetite–quartz buffer curve to the magnetite–hematite buffer curve, indicating an oxidized magma source, which may have facilitated the Cu–Au enrichment. Zircons from granitoids show εHf(t) values ranging from −0.75 to +2.33 and crustal model ages between 0.9 and 1.1 Ga. The features of Lu–Hf isotopes and wide range of Mg#, Cr, and Ni contents imply that the magmas of the Machangqing granitoids were probably derived from partial melting of juvenile lower crust and mixed with some mantle melts. Combined with the features of the Machangqing granitoids, the following evolution process are concluded. During the Cenozoic, the India–Asia continental collision triggered upwelling of hot asthenosphere and underplating of the thickened juvenile lower crust, which caused the formation of mafic and felsic magmas. Those magmas ascended, mixed, crystallized, and formed Machangqing ore-bearing granitoids in an intracontinental extension setting.



Author(s):  
Lu-Lu Hao ◽  
Qiang Wang ◽  
Andrew C. Kerr ◽  
Jin-Hui Yang ◽  
Lin Ma ◽  
...  

The nature and timing of post-collisional crustal thickening and its link to surface uplift in the eastern Lhasa block of the southern Tibetan plateau remain controversial. Here we report on Cenozoic magmatism in the Wuyu area of the eastern Lhasa block. The Eocene (ca. 46 Ma) trachyandesites and trachydacites show slight fractionation of rare earth elements (REE), slightly negative Eu and Sr anomalies, and relatively homogeneous Sr-Nd and zircon Hf isotopes (87Sr/86Sr(i) = 0.7050−0.7063, εNd(t) = −0.92 to −0.03, εHf(t) = +2.6 to +4.8). Previous studies have suggested Neo-Tethys oceanic slab break-off at 50−45 Ma; thus, the Wuyu Eocene magmatism could represent a magmatic response to this slab break-off and originate from relatively juvenile Lhasa crust. The Miocene (ca. 15−12 Ma) dacites and rhyolites have adakitic affinities, e.g., high Sr (average 588 ppm), Sr/Y (29−136), and La/Yb (30−76) values, low Y (4−12 ppm) and Yb (0.4−0.9 ppm) contents, and variable Sr-Nd and zircon Hf isotopes (87Sr/86Sr(i) = 0.7064−0.7142, εNd(t) = −11.7 to −3.7, εHf(t) = −3.2 to +4.5). Their more enriched Sr-Nd-Hf isotopes relative to the Eocene lavas indicate that they should be derived from mixed Lhasa lower crust comprising juvenile crust, ultrapotassic rocks, and probably Indian lower crust-derived rocks. This study has also revealed the transformation from Eocene juvenile and thin crust with a thickness of <40 km to Miocene mixed and thickened crust with a thickness of >50 km. Combined with published tectonic data, we suggest that both lithospheric shortening and magma underplating contributed to eastern Lhasa block post-collisional crustal thickening. Given the spatial-temporal distribution of eastern Lhasa block magmatism and regional geology, we invoke a post-collisional tectonic model of steep subduction of the Indian plate and subsequent westward-propagating plate break-off beneath the eastern Lhasa block, which caused the surface uplift.



2019 ◽  
Vol 132 (7-8) ◽  
pp. 1756-1774 ◽  
Author(s):  
M.N. Muhtar ◽  
Chang-Zhi Wu ◽  
M. Santosh ◽  
Ru-Xiong Lei ◽  
Lian-Xing Gu ◽  
...  

Abstract Late Paleozoic large-scale transcurrent tectonics and synkinematic intrusions are prominent features in the Eastern Tianshan segment of the southwestern Central Asian Orogenic Belt. However, the spatial and temporal relationship between synkinematic intrusions and crustal-scale shear zones remains unclear. Here we report petrology, geochemistry, and geochronology of the Qiziltag pluton associated with the Kanggur-Huangshan Shear Zone (KHSZ) with a view to characterize the spatial and temporal relationship between synkinematic intrusions and large-scale transcurrent shearing. Field relations and zircon U-Pb ages indicate that the Qiziltag pluton was formed through two stages of magmatism, with earlier stage granitoids (gneissic biotite granite: 288.9 ± 1.9 Ma, biotite monzogranite: 291.5 ± 1.7 Ma, K-feldspar granite: 287.9 ± 3.1 Ma), and later stage bimodal intrusions (biotite quartz monzonite: 278.5 ± 1.8 Ma, gabbro: 278.1 ± 2.3 Ma). The earlier stage granitoids are high-K calc-alkaline, enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs; e.g., Rb, Th, and U), and depleted in high field strength elements (HFSEs; e.g., Nb, Ta, and Ti). Combined with their depleted isotopic compositions (εNd(t) = +6.29 to +7.48) and juvenile model ages (TDM2 = 450–610 Ma), we infer that the granitoids were derived from juvenile lower crust in a post-collisional tectonic transition (from compression to extension). The structural and temporal features indicate that the earlier stage (ca. 290 Ma) granitoids formed prior to the regional large-scale dextral strike slip. The later stage bimodal intrusions are dominated by biotite quartz monzonite as the felsic member and gabbro as the mafic component. The biotite quartz monzonite is high-K calc-alkaline with enriched LREEs and LILEs (e.g., Rb, Th, and U), and depleted HFSEs (e.g., Nb, Ta, and Ti), whereas the gabbro is subalkalic with depleted LREEs and HFSEs (e.g., Nb and Ta), resembling normal mid-ocean ridge basalt features. The bimodal intrusions show similar isotopic compositions (εNd(t) = +6.41 to +6.72 and εHf(t) = +9.55 to + 13.85 for biotite quartz monzonite; εNd(t) = +9.13 to +9.69 and εHf(t) = +4.80 to +14.07 for gabbro). These features suggest that the later stage (ca. 280 Ma) bimodal intrusions were derived from partial melting of depleted mantle and anatectic melting of lower crust materials induced by synchronous underplating of basaltic magma in a post-collisional extension. The structural features of the bimodal intrusions indicate that the later stage (ca. 280 Ma) magmatism was coeval with the development of the KHSZ. In conjunction with spatial and temporal evolution of magmatism and sedimentary records of Eastern Tianshan, we infer that transition between the northward closure of the North Tianshan Ocean and subsequent collision between the Central Tianshan Massif and the Qoltag Arc belt occurred at ca. 300 Ma.



1982 ◽  
Vol 19 (5) ◽  
pp. 1045-1054 ◽  
Author(s):  
Larry M. Heaman ◽  
Yuch-Ning Shieh ◽  
Robert H. McNutt ◽  
Denis M. Shaw

The Loon Lake pluton is a small, reversely zoned pluton with subordinate isolated bodies of diorite and granodiorite gneiss. This pluton is located within the Hastings Basin of the Grenville Province and intrudes the structurally complex Grenville Supergroup.A synthesis of the oxygen and strontium isotopic and trace element data for the monzonite core and quartz monzonite rim indicates that these units are cogenetic but the margin of the pluton has interacted with a CO2–H2O fluid derived from the country rock. This interaction influenced the REE pattern and produced a noticeable enrichment of Rb, 18O, and possibly SiO2 in the rim but did not significantly influence the strontium isotopic systematics. A composite isochron including samples from both units indicates an emplacement age of 1065 ± 13 Ma with an initial strontium ratio of 0.7034 ± 0.0004. Samples from the isolated mafic units indicate an older age and therefore are not interpreted as cogenetic endmembers.The uniform but abnormally high δ18O in the monzonite core and low initial strontium ratio are interpreted to reflect a source composition in the lower crust.



2020 ◽  
Author(s):  
Wei Wei ◽  
Xiyong Wu

<p>The Mesozoic granitic magmatism in Haliheiba is poorly understood because of lacking systematic data. Hence, this paper presents petrological observations, zircon U–Pb ages, geochemistry and Hf isotopes for these rocks. These rocks comprise granidiorite and quartz monzonite. Zircon LA-ICP-MS U–Pb dating yields emplacement ages of 247.6 ± 1.1 Ma and 247.0 ± 1.5 Ma for granidiorite and quartz monzonite, respectively. Geochemically, the granidiorite has SiO<sub>2</sub> contents of 65.86–67.37 wt% and alkali concentrations of 7.97–8.44 wt%; the quartz monzonite has SiO<sub>2</sub> contents of 66.95–67.28 wt% and alkali concentrations of 8.52–8.63 wt%, which belong to calc-alkaline series and are metaluminous rocks. These granitoids are enriched in light rare earth elements (LREEs) with (La/Yb)<sub>N</sub> values from 5.27 to 12.09 and have slightly to moderately negative Eu anomalies with δEu values from 0.53 to 0.78 in the chondrite-normalized REE diagram. Furthermore, these granitoids are relatively enriched Rb, U, Th, K, and Pb and slightly depleted in Nb, Ta, Ba, Ti, and P in the primitive mantle-normalized spider diagram. The above geochemical signatures reveal that these granites have I-type affinity. Zircon Hf isotope data show that these granitoids possess high positive εHf(t) values from +8.9 to +14.9 and fairly young Hf model ages from 305 to 620 Ma, indicating that they are mainly derived from partial melting of juvenile crustal components. Combined with regional geology, our results indicate that the Triassic magmatism in Haliheiba most likely resulted from the subduction of the Paleo-Asian Ocean beneath the North China Craton. Our results together with regional isotopic data suggest that a significant crustal accretion event occurred during the Neoproterozoic to Paleozoic in the Great Xing’an Range.</p>







Sign in / Sign up

Export Citation Format

Share Document