scholarly journals Sex classification using long‐range temporal dependence of resting‐state functional MRI time series

2020 ◽  
Vol 41 (13) ◽  
pp. 3567-3579 ◽  
Author(s):  
Elvisha Dhamala ◽  
Keith W. Jamison ◽  
Mert R. Sabuncu ◽  
Amy Kuceyeski
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Gadi Goelman ◽  
Rotem Dan ◽  
Filip Růžička ◽  
Ondrej Bezdicek ◽  
Evžen Růžička ◽  
...  

Abstract We describe an analysis method that characterizes the correlation between coupled time-series functions by their frequencies and phases. It provides a unified framework for simultaneous assessment of frequency and latency of a coupled time-series. The analysis is demonstrated on resting-state functional MRI data of 34 healthy subjects. Interactions between fMRI time-series are represented by cross-correlation (with time-lag) functions. A general linear model is used on the cross-correlation functions to obtain the frequencies and phase-differences of the original time-series. We define symmetric, antisymmetric and asymmetric cross-correlation functions that correspond respectively to in-phase, 90° out-of-phase and any phase difference between a pair of time-series, where the last two were never introduced before. Seed maps of the motor system were calculated to demonstrate the strength and capabilities of the analysis. Unique types of functional connections, their dominant frequencies and phase-differences have been identified. The relation between phase-differences and time-delays is shown. The phase-differences are speculated to inform transfer-time and/or to reflect a difference in the hemodynamic response between regions that are modulated by neurotransmitters concentration. The analysis can be used with any coupled functions in many disciplines including electrophysiology, EEG or MEG in neuroscience.


2019 ◽  
Author(s):  
Elvisha Dhamala ◽  
Keith W. Jamison ◽  
Mert R. Sabuncu ◽  
Amy Kuceyeski

AbstractA thorough understanding of sex differences, if any, that exist in the brains of healthy individuals is crucial for the study of neurological illnesses that exhibit differences in clinical and behavioural phenotypes between males and females. In this work, we evaluate sex differences in regional temporal dependence of resting-state brain activity using 195 male-female pairs (aged 22-37) from the Human Connectome Project. Male-female pairs are strictly matched for total grey matter volume. We find that males have more persistent long-range temporal dependence than females in regions within temporal, parietal, and occipital cortices. Machine learning algorithms trained on regional temporal dependence measures achieve sex classification accuracies of up to 81%. Regions with the strongest feature importance in the sex classification task included cerebellum, amygdala, frontal cortex, and occipital cortex. Additionally, we find that even after males and females are strictly matched on total grey matter volume, significant regional volumetric sex differences persist in many cortical and subcortical regions. Our results indicate males have larger cerebella, hippocampi, parahippocampi, thalami, caudates, and amygdalae while females have larger cingulates, precunei, frontal cortices, and parietal cortices. Sex classification based on regional volume achieves accuracies of up to 85%; cerebellum, cingulate cortex, and temporal cortex are the most important features. These findings highlight the important role of strict volume matching when studying brain-based sex differences. Differential patterns in regional temporal dependence between males and females identifies a potential neurobiological substrate underlying sex differences in functional brain activation patterns and the behaviours with which they correlate.


2018 ◽  
Vol 492 ◽  
pp. 639-650 ◽  
Author(s):  
Shuo Feng ◽  
Xingmin Wang ◽  
Haowei Sun ◽  
Yi Zhang ◽  
Li Li

Risks ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 51
Author(s):  
Anthony Medford

Best practice life expectancy has recently been modeled using extreme value theory. In this paper we present the Gumbel autoregressive model of order one—Gumbel AR(1)—as an option for modeling best practice life expectancy. This class of model represents a neat and coherent framework for modeling time series extremes. The Gumbel distribution accounts for the extreme nature of best practice life expectancy, while the AR structure accounts for the temporal dependence in the time series. Model diagnostics and simulation results indicate that these models present a viable alternative to Gaussian AR(1) models when dealing with time series of extremes and merit further exploration.


Author(s):  
Jan Beran ◽  
Britta Steffens ◽  
Sucharita Ghosh

AbstractWe consider nonparametric regression for bivariate circular time series with long-range dependence. Asymptotic results for circular Nadaraya–Watson estimators are derived. Due to long-range dependence, a range of asymptotically optimal bandwidths can be found where the asymptotic rate of convergence does not depend on the bandwidth. The result can be used for obtaining simple confidence bands for the regression function. The method is illustrated by an application to wind direction data.


Sign in / Sign up

Export Citation Format

Share Document