Oxidative stress status and RNA expression in hippocampus of an animal model of Alzheimer's disease after chronic exposure to aluminum

Hippocampus ◽  
2009 ◽  
pp. NA-NA ◽  
Author(s):  
Tania Garcia ◽  
José L. Esparza ◽  
M. Rosa Nogués ◽  
Marta Romeu ◽  
José L. Domingo ◽  
...  
2019 ◽  
Vol 129 (11) ◽  
pp. 1145-1153 ◽  
Author(s):  
Zohreh Dastan ◽  
Mahdi Pouramir ◽  
Maryam Ghasemi-Kasman ◽  
Zahra Ghasemzadeh ◽  
Masoumeh Dadgar ◽  
...  

Author(s):  
Khan A ◽  
Kamal R ◽  
Dhawan Dk ◽  
Vijayta Dani Chadha

Objective: The present study was undertaken to study the therapeutic effects of low dose fractionated cranial X-irradiation on reducing the amyloid-beta (Aβ) induced oxidative stress burden in an animal model of Alzheimer’s disease (AD).Methods: S.D. female rats received an intracerebroventricular injection of Aβ peptide at stereotaxically defined points. Experimental sessions were conducted by randomly dividing animals into four groups, namely sham-operated, Aβ-injected, and Aβ injection followed by cranial X-irradiation and only cranial X-irradiated. Anesthetized animals received 5 μl synthetic Aβ peptide injection with a 10 μl Hamilton microsyringe with the needle kept in place for a period of 2min following injection. Sham-operated group received 5 μl of bidistilled water instead of Aβ peptide. Animals were treated 6 weeks post-surgery with fractionated radiation of 2Gy for 5 days. Neurobehavior studies were undertaken to confirm memory impairment along with biochemical indices involved in the antioxidant defense system.Results: Fractionated cranial X-irradiation proved effective in restoration of activity of enzymes involved in the antioxidant defense system; the lipid peroxidation and catalase levels that showed a significant increase in Aβ-treated group decreased on subsequent X-irradiation. Moreover, the decrease in the superoxide dismutase, glutathione, glutathione-S-transferase, and glutathione reductase levels witnessed an increase post-irradiation, implicating the X-irradiation to be an effective intervention to restore the redox status of the oxidatively stressed brain cells in AD condition.Conclusion: The present study evaluated the therapeutic potential of low dose fractionated cranial X- irradiation by mitigating the amyloid-induced oxidative stress suggesting a novel treatment for AD-associated pathologies.


2018 ◽  
Vol 8 (10) ◽  
pp. 185 ◽  
Author(s):  
Teresa Joy ◽  
Muddanna Rao ◽  
Sampath Madhyastha

Alzheimer’s disease (AD) is characterized by the accumulation of neurofibrillary tangles (NFT), deposition of beta amyloid plaques, and consequent neuronal loss in the brain tissue. Oxidative stress to the neurons is often attributed to AD, but its link to NFT and β-amyloid protein (BAP) still remains unclear. In an animal model of AD, we boosted the oxidative defense by N-Acetyl cysteine (NAC), a precursor of glutathione, a powerful antioxidant and free radical scavenger, to understand the link between oxidative stress and NFT. In mimicking AD, intracerebroventricular (ICV) colchicine, a microtubule disrupting agent also known to cause oxidative stress was administered to the rats. The animal groups consisted of an age-matched control, sham operated, AD, and NAC treated in AD models of rats. Cognitive function was evaluated in a passive avoidance test; neuronal degeneration was quantified using Nissl staining. NFT in the form of abnormal tau expression in different regions of the brain were evaluated through immunohistochemistry using rabbit anti-tau antibody. ICV has resulted in significant cognitive and neuronal loss in medial prefrontal cortex (MFC) and all the regions of the hippocampus. It has also resulted in increased accumulation of intraneuronal tau in the hippocampus and MFC. NAC treatment in AD model rats has reversed the cognitive loss and neuronal degeneration. The intraneuronal tau expression also minimized with NAC treatment in AD model rats. Thus, our findings suggest that an antioxidant supplement during the progression of AD is likely to prevent neuronal degeneration by minimizing the neurofibrillary degeneration in the form of tau accumulation.


Author(s):  
Khan A ◽  
Kamal R ◽  
Dhawan Dk ◽  
Vijayta Dani Chadha

Objective: The present study was undertaken to study the therapeutic effects of low dose fractionated cranial X-irradiation on reducing the amyloid-beta (Aβ) induced oxidative stress burden in an animal model of Alzheimer’s disease (AD).Methods: S.D. female rats received an intracerebroventricular injection of Aβ peptide at stereotaxically defined points. Experimental sessions were conducted by randomly dividing animals into four groups, namely sham-operated, Aβ-injected, and Aβ injection followed by cranial X-irradiation and only cranial X-irradiated. Anesthetized animals received 5 μl synthetic Aβ peptide injection with a 10 μl Hamilton microsyringe with the needle kept in place for a period of 2min following injection. Sham-operated group received 5 μl of bidistilled water instead of Aβ peptide. Animals were treated 6 weeks post-surgery with fractionated radiation of 2Gy for 5 days. Neurobehavior studies were undertaken to confirm memory impairment along with biochemical indices involved in the antioxidant defense system.Results: Fractionated cranial X-irradiation proved effective in restoration of activity of enzymes involved in the antioxidant defense system; the lipid peroxidation and catalase levels that showed a significant increase in Aβ-treated group decreased on subsequent X-irradiation. Moreover, the decrease in the superoxide dismutase, glutathione, glutathione-S-transferase, and glutathione reductase levels witnessed an increase post-irradiation, implicating the X-irradiation to be an effective intervention to restore the redox status of the oxidatively stressed brain cells in AD condition.Conclusion: The present study evaluated the therapeutic potential of low dose fractionated cranial X- irradiation by mitigating the amyloid-induced oxidative stress suggesting a novel treatment for AD-associated pathologies.


2013 ◽  
Vol 65 ◽  
pp. S46-S47
Author(s):  
Rui-Ming Liu ◽  
Hasina Akhter ◽  
Carol Ballinger ◽  
Thomas van Groen ◽  
Michelle Fanucchi ◽  
...  

2013 ◽  
Vol 10 (3) ◽  
pp. 252-260 ◽  
Author(s):  
Jae K Ryu ◽  
Jonathan P Little ◽  
Andis Klegeris ◽  
Nattinee Jantaratnotai ◽  
James G McLarnon

Sign in / Sign up

Export Citation Format

Share Document