scholarly journals TARGETING PROXIMAL BCR SIGNALING PATHWAY IN DIFFUSE LARGE B‐CELL LYMPHOMA

2021 ◽  
Vol 39 (S2) ◽  
Author(s):  
J. W Choi ◽  
S Corcoran ◽  
B Wang ◽  
Björ Häupl ◽  
M Ceribelli ◽  
...  
Blood ◽  
2021 ◽  
Author(s):  
Wendan Xu ◽  
Philipp Berning ◽  
Georg Lenz

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous diagnostic category comprising distinct molecular subtypes characterized by diverse genetic aberrations that dictate patient outcome. As roughly one-third of DLBCL patients are not cured by current standard chemo-immunotherapy a better understanding of the molecular pathogenesis is warranted to improve outcome. B-cell receptor (BCR) signaling is crucial for the development, growth and survival of both normal and a substantial fraction of malignant B-cells. Various analyses revealed genetic alterations of central components of the BCR or its downstream signaling effectors in some subtypes of DLBCL. Thus, BCR signaling and the downstream NF-κB and PI3K cascades have been proposed as potential targets for the treatment of DLBCL patients. As one of the main effectors of BCR activation, PI3K mediated signals play a crucial role in the pathogenesis and survival of DLBCL. In this review, we summarize our current understanding of BCR signaling with a special focus on the PI3K pathway in DLBCL and how to utilize this knowledge therapeutically.


2010 ◽  
Vol 51 (7) ◽  
pp. 1305-1314 ◽  
Author(s):  
Shahab Uddin ◽  
Rong Bu ◽  
Maqbool Ahmed ◽  
Azhar R. Hussain ◽  
Dahish Ajarim ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2963-2963
Author(s):  
Goldi A Kozloski ◽  
Xiaoyu Jiang ◽  
Shruti Bhatt ◽  
Rita Shaknovich ◽  
Ari M Melnick ◽  
...  

Abstract Introduction: Diffuse large B-cell lymphoma (DLBCL) is subdivided into the germinal center B-like (GCB) and activated B cell-like (ABC) subtypes by gene expression profiling, and these subtypes exhibit different clinical outcomes and signaling pathway deregulations. Compared to the GCB, the ABC-DLBCL subtype displays a more aggressive clinical course and shorter patient survival. Constitutive nuclear factor kappa-B (NF-kB) activity is often associated with the ABC-DLBCL subtype, however recent studies suggest that NF-kB signaling activation is also observed to a lower extent in the GCB-DLBCL subtype (Lina Odqvist et al. 2014). miRNAs have diagnostic and prognostic value in disease classification, and growing evidence implicates miRNAs in tumorigenesis, tumor maintenance, and dissemination through their ability to modulate the expression of critical genes and signaling networks. We previously demonstrated that miRNA-181a expression correlates with longer survival in patients treated with R-CHOP, independent of established clinical and molecular predictors. However, the molecular and cellular mechanisms underlying the association between miRNA-181a expression and improved prognosis in DLBCL patients are currently unknown. Herein we analyzed the role of miRNA-181a in DLBCL pathogenesis. Results:Quantitative RT-PCR analyses demonstrate higher endogenous miRNA-181a levels in centroblasts than in plasmablasts. Concordantly, endogenous miRNA-181a levels were significantly higher in GCB DLBCL cell lines and primary tumors compared with ABC DLBCL. These expression differences could not be attributed to distinct DNA methylation signatures in the miRNA-181a promoters (Chromosomes 1, 9) or regulatory elements as analyzed by Mass Array Sequenom Epityping. In search for putative miRNA-181a targets we identified 5 genes (CARD11, NFKB1A (IKBα), NFKB1 (p105/p50), RELA (p65), and REL (CREL)) within the NF-kB signaling pathway. Analyses of these targets show a decrease in the levels of these proteins and mRNAs in ABC and GCB DLBCL cell lines ectopically expressing miRNA-181a compared with scramble control plasmid. Luciferase reporter analyses encoding the respective wild type or mutated 3′UTR sequences demonstrate direct and specific targeting of these transcripts with the exception of RELA. Analysis of the net effect of miRNA-181a on NF-kB signaling using NF-kB luciferase reporter demonstrate significant decrease in NF-kB signaling. Concordantly, anti-miRNA-181a transfection led to increased NF-kB luciferase reporter activity. Moreover, western blot analyses of cytoplasmic and nuclear fractions showed a decrease in the levels of the transcription factors CREL and p50 in both cellular compartments, a decrease in the binding to DNA at NF-kB binding motifs, and a consequent decrease in NF-kB target gene transcription in the miRNA-181a expressing cells compared with scramble control. Together these studies point to miRNA-181a-mediated repression of NF-kB signaling in DLBCLs. Ectopic miRNA-181a expression led to a decrease in cell proliferation and an increase in cell death in both DLBCL subtypes, but this effect was more pronounced in the ABC DLBCL cell lines. The miRNA-181a-mediated increase in cell apoptosis could not be rescued by BCL2 co-transfection, an anti-apoptotic protein that was previously established as a direct miRNA-181a target. Analyses of miRNA-181a effects in NOD/SCID mice demonstrated that in vivo miRNA-181a induction in GCB and ABC human DLBCL xenografts led to decreased tumor growth and significantly longer animal survival. Notably, survival was prolonged in both GCB and ABC DLBCL bearing animals. Figure 1 Figure 1. Conclusions: miRNA-181a directly suppress the NF-kB signaling pathway and lead to increased tumor cell death in both DLBCL subtypes suggesting that NF-kB deregulation is present in both tumor subtypes. However, the lower miRNA-181a expression level in the ABC DLBCL subtype may contribute to the higher NF-kB signaling activity that is observed in this subtype. Furthermore, our study provides a plausible explanation for the association between high miRNA-181a expression and longer survival of DLBCL patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 926-926
Author(s):  
Y. Lynn Wang ◽  
Jiao Ma ◽  
Wei Xing ◽  
Pin Lu ◽  
Karen Dresser ◽  
...  

Abstract Non-Hodgkin Lymphoma (NHL) represents about 5 percent of all cancers diagnosed in the United States. While incidence of NHL has increased slightly over the past decade, death rates have been declining steadily. These declines in mortality can be attributed to improvements in treatment that are based on an increased understanding of the biology of the disease. Diffuse large B-cell lymphoma (DLBCL) accounts for ~30% of NHLs and greater than 80% of aggressive NHLs. Recent studies including large-scale genetic analyses have demonstrated the critical roles of the B-cell receptor’s (BCR) and JAK/STAT pathways in DLBCL. Herein, we investigated the anti-lymphoma activity of cerdulatinib (aka PRT062070), a novel compound that dually targets both SYK and JAK/STAT signaling pathways. To determine whether targeting both SYK and JAK/STAT is relevant in DLBCL, we examined the expression of p-SYK (pY525/526) and p-STAT3 (pY705) on a tissue microarray of 62 DLBCL primary tumors, including 41 GCB and 21 non-GCB cases. p-SYK expression was detected in 29 (47%) cases with a characteristic peri-membrane staining pattern. Of those 29 p-SYK positive cases, 17 were GCB type (17/41, 41%) and 12 were non-GCB type (12/21, 57%). p-STAT3 exhibits a characteristic nuclear staining pattern in DLBCL cases. A total of 26 (42%) stained positive for p-STAT3; 16 were GCB type (16/41, 39%) and 10 were non-GCB type (10/21, 48%). Interestingly, there are 19 cases (31%) with reactivity for both p-SYK and p-STAT3, among which, 11 were GCB type (27%) and 8 were non-GCB type (38%). SYK and STAT3 are also phosphorylated in a panel of nine DLBCL cell lines. Immunoblotting analyses showed that ABC and GCB subtypes of DLBCL cells appear to exhibit different JAK/STAT and BCR signaling profiles. For instance, p-AKT was highly expressed in GCB cells, whereas p-STAT3 was more strongly expressed in ABC cells. Overall, the DLBCL cells are more sensitive to the dual inhibitor than to the SYK-specific inhibitor alone. In both GCB and ABC cell lines, cerdulatinib induced apoptosis via down-regulation of MCL1 protein and PARP cleavage. The compound also blocked G1/S transition and caused cell cycle arrest through inhibition of RB phosphorylation and down-regulation of cyclin E. Further analyses of the cell signaling activities showed that STAT3 phosphorylation was sensitive to inhibition by cerdulatinib in ABC cell lines while phosphorylation of SYK, PLCg2, AKT and ERK was sensitive to inhibition by cerdulatinib in GCB cell lines. Importantly, JAK/STAT and BCR signaling can be blocked by cerdulatinib in GCB and non-GCB primary human DLBCL cells, which led to cell death of these cells. Our work provided mechanistic insights into the actions of SYK/JAK dual inhibitor cerdulatinib, suggesting that the drug may be a potent treatment of DLBCL with a broader anti-tumor activity in both ABC and GCB subtypes of the lymphoma. Disclosures Pandey: Portola Pharmaceuticals: Employment. Conley:Portola Pharmaceuticals: Employment. Coffey:Portola Pharmaceuticals: Employment.


Blood ◽  
2011 ◽  
Vol 118 (24) ◽  
pp. 6342-6352 ◽  
Author(s):  
Shuhua Cheng ◽  
Greg Coffey ◽  
X. Hannah Zhang ◽  
Rita Shaknovich ◽  
Zibo Song ◽  
...  

Abstract Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma, and the role of SYK in its pathogenesis is not completely understood. Using tissue microarray, we demonstrated for the first time that SYK protein is activated in 27 of 61 (44%) primary human DLBCL tissues. Among DLBCL cell lines, 7 were sensitive and 3 were resistant to a highly specific SYK inhibitor, PRT060318. In sensitive DLBCL cells, SYK inhibition blocked the G1-S transition and caused cell-cycle arrest. This effect was reproduced by genetic reduction of SYK using siRNA. A detailed analysis of the BCR signaling pathways revealed that the consequence of SYK inhibition on PLCγ2 and AKT, as opposed to ERK1/2, was responsible for cell-cycle arrest. Genetic knock-down of these key molecules decelerated the proliferation of lymphoma cells. In addition, BCR signaling can be blocked by PRT060318 in primary lymphoma cells. Together, these findings provide insights into cellular pathways required for lymphoma cell growth and support the rationale for considering SYK inhibition as a potentially useful therapy for DLBCL. The results further suggest the possibility of using PLCγ2 and AKT as biomarkers to predict therapeutic response in prospective clinical trials of specific SYK inhibitors.


2010 ◽  
Vol 108 (1) ◽  
pp. 272-277 ◽  
Author(s):  
Bernhard Kloo ◽  
Daniel Nagel ◽  
Matthias Pfeifer ◽  
Michael Grau ◽  
Michael Düwel ◽  
...  

The activated B-cell–like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) represents a very aggressive human lymphoma entity. Constitutive NF-κB activation caused by chronic active B-cell receptor (BCR) signaling is common feature of many ABC DLBCL cells; however, the pathways linking BCR signaling to the NF-κB prosurvival network are largely unknown. Here we report that constitutive activity of PI3K and the downstream kinase PDK1 are essential for the viability of two ABC DLBCL cell lines that carry mutations in the BCR proximal signaling adaptor CD79B. In these cells, PI3K inhibition reduces NF-κB activity and decreases the expression of NF-κB target genes. Furthermore, PI3K and PDK1 are required for maintaining MALT1 protease activity, which promotes survival of the affected ABC DLBCL cells. These results demonstrate a critical function of PI3K-PDK1 signaling upstream of MALT1 protease and NF-κB in distinct ABC DLBCL cells and provide a rationale for the pharmacologic use of PI3K inhibitors in DLBCL therapy.


Sign in / Sign up

Export Citation Format

Share Document