Effect of inclined and low magnetic field in gaseous slip flow in two‐dimensional rectangular microchannel using first‐order boundary conditions

Heat Transfer ◽  
2020 ◽  
Vol 49 (5) ◽  
pp. 2887-2905
Author(s):  
Duaa M. Kharouf ◽  
Khaleel Al‐Khasawneh ◽  
Mohammad Tarawneh
Heat Transfer ◽  
2019 ◽  
Vol 49 (2) ◽  
pp. 909-931 ◽  
Author(s):  
Khaleel Al Khasawneh ◽  
Amani A. AlWardat ◽  
Saud A. Khashan

1965 ◽  
Vol 9 (02) ◽  
pp. 40-55
Author(s):  
C. S. Song

The problem of a supercavitating flat plate at zero and nonzero cavitation numberoscillating under a free surface is analyzed by a linearized method using the accelerationpotential. The analysis is based on the concept of small velocity perturbations where in all second-order quantities are neglected. The flow is assumed two-dimensional, irrotational, incompressible, and gravitation-free. The potential-flow region is mapped on to an upper half-plane and the solution is expressed in an integral form using Cheng andRott's method. Special attention is given to the effect of approximate wake boundary conditions on the computed force and moment. It was estimated that the effect is of secondorder when the cavitation number is a first-order small quantity.


2017 ◽  
Vol 14 (10) ◽  
pp. 1750141 ◽  
Author(s):  
Slimane Zaim ◽  
Hakim Guelmamene ◽  
Yazid Delenda

We obtain exact solutions to the two-dimensional (2D) Klein–Gordon oscillator in a non-commutative (NC) complex phase space to first order in the non-commutativity parameter. We derive the exact NC energy levels and show that the energy levels split to [Formula: see text] levels. We find that the non-commutativity plays the role of a magnetic field interacting automatically with the spin of a particle induced by the non-commutativity of complex phase space. The effect of the non-commutativity parameter on the thermal properties is discussed. It is found that the dependence of the heat capacity [Formula: see text] on the NC parameter gives rise to a negative quantity. Phenomenologically, this effectively confirms the presence of the effects of self-gravitation induced by the non-commutativity of complex phase space.


1998 ◽  
Vol 358 ◽  
pp. 299-333 ◽  
Author(s):  
OLEG ZIKANOV ◽  
ANDRE THESS

The transformation of initially isotropic turbulent flow of electrically conducting incompressible viscous fluid under the influence of an imposed homogeneous magnetic field is investigated using direct numerical simulation. Under the assumption of large kinetic and small magnetic Reynolds numbers (magnetic Prandtl number Pm[Lt ]1) the quasi-static approximation is applied for the computation of the magnetic field fluctuations. The flow is assumed to be homogeneous and contained in a three-dimensional cubic box with periodic boundary conditions. Large-scale forcing is applied to maintain a statistically steady level of the flow energy. It is found that the pathway traversed by the flow transformation depends decisively on the magnetic interaction parameter (Stuart number). If the magnetic interaction number is small the flow remains three-dimensional and turbulent and no detectable deviation from isotropy is observed. In the case of a strong magnetic field (large magnetic interaction parameter) a rapid transformation to a purely two-dimensional steady state is obtained in agreement with earlier analytical and numerical results for decaying MHD turbulence. At intermediate values of the magnetic interaction parameter the system exhibits intermittent behaviour, characterized by organized quasi-two-dimensional evolution lasting several eddy-turnover times, which is interrupted by strong three-dimensional turbulent bursts. This result implies that the conventional picture of steady angular energy transfer in MHD turbulence must be refined. The spatial structure of the steady two-dimensional final flow obtained in the case of large magnetic interaction parameter is examined. It is found that due to the type of forcing and boundary conditions applied, this state always occurs in the form of a square periodic lattice of alternating vortices occupying the largest possible scale. The stability of this flow to three-dimensional perturbations is analysed using the energy stability method.


1998 ◽  
Vol 09 (02) ◽  
pp. 301-323 ◽  
Author(s):  
Jean-Guy Caputo ◽  
Nikos Flytzanis ◽  
Yuri Gaididei ◽  
Irene Moulitsa ◽  
Emmanuel Vavalis

We introduce a new type of splitting method for semilinear partial differential equations. The method is analyzed in detail for the case of the two-dimensional static sine-Gordon equation describing a large area Josephson junction with overlap current feed and external magnetic field. The solution is separated into an explicit term that satisfies the one-dimensional sine-Gordon equation in the y-direction with boundary conditions determined by the bias current and a residual which is expanded using modes in the y-direction, the coefficients of which satisfy ordinary differential equations in x with boundary conditions given by the magnetic field. We show by direct comparison with a two-dimensional solution that this method converges and that it is an efficient way of solving the problem. The convergence of the y expansion for the residual is compared for Fourier cosine modes and the normal modes associated to the static one-dimensional sine-Gordon equation and we find a faster convergence for the latter. Even for such large widths as w=10 two such modes are enough to give accurate results.


Sign in / Sign up

Export Citation Format

Share Document