Effect of Joule heating on MHD non‐Newtonian fluid flow past an exponentially stretching curved surface

Heat Transfer ◽  
2020 ◽  
Vol 49 (6) ◽  
pp. 3575-3592 ◽  
Author(s):  
Anantha Kumar Kempannagari ◽  
Ramoorthy Reddy Buruju ◽  
Sandeep Naramgari ◽  
Sugunamma Vangala
2017 ◽  
Vol 7 ◽  
pp. 3659-3667 ◽  
Author(s):  
Khalil Ur Rehman ◽  
Abid Ali Khan ◽  
M.Y. Malik ◽  
Iffat Zehra ◽  
Usman Ali

2021 ◽  
Vol 16 ◽  
pp. 74-86
Author(s):  
T. S. L. Radhika ◽  
T. Raja Rani

In the current work, we aim at finding an analytical solution to the problem of fluid flow past a pair of separated non-Newtonian fluid bubbles. These bubbles are assumed to be spherical and non-permeable with the non-Newtonian fluid, viz. the couple stress fluid filling their interior. Further, the bubbles are presumed to be static in the flow domain, where a Newtonian fluid streams past these bubbles with a constant velocity (U) along the negative x-direction. We developed a mathematical model in the bipolar coordinate system for the fluid flow outside the bubbles and the spherical coordinate system inside the bubbles to derive a separable solution for their respective governing equations. Furthermore, to evaluate the model's applicabilities on the industrial front, the data on some widely used industrial fluids are given as inputs to the model, such as density, the viscosity of air or water for the fluid flow model developed for the region outside the fluid bubbles and the data on Cyclopentane or DIDP (non-Newtonian) for that within the bubbles. Some interesting findings are: the pressure in the outer region of the bubbles is higher when filled with low viscous industrial fluid, Cyclopentane, than a high viscous fluid, DIDP. Furthermore, an increase in the viscosity of Cyclopentane did not alter the pressure distribution in the region outside the bubbles. However, there is a considerable effect on this pressure in the case of DIDP bubbles.


Author(s):  
Aamir Abbas Khan ◽  
Muhammad Naveed Khan ◽  
Muhammad Ashraf ◽  
Ahmed M. Galal ◽  
Taseer Muhammad ◽  
...  

The main aim of current research work is to examine the impacts of homogeneous/heterogeneous reactions on the three-dimensional second-grade micropolar fluid flow caused by an exponentially stretching Riga plate. The thermal and solutal energy transportation characteristics are observed in the existence of Cattaneo–Christov heat flux, non-uniform heat source/sink and joule heating. Moreover, the features of thermal slip and porous medium are also incorporated in the mathematical model. The dimensionless process is adopted for the conversion of the PDEs into the self-similar form of ordinary differential equations (ODEs). The numerical approach Bvp4c is employed to solve ODEs and a comprehensive discussion is presented of arising physical parameters in this research work. The velocity profile rises as boosting the values of the microrotation parameter. Further, microrotation profiles along with x- and y-axes show decaying behaviour for the higher estimations of microrotation parameters. The homogeneous reaction profile has rising behaviour for higher values of Schmidt number and diminishing for higher estimations of strength homogeneous reaction parameter, respectively.


Sign in / Sign up

Export Citation Format

Share Document