Energy transference in time‐dependent Cattaneo–Christov double diffusion of second‐grade fluid with variable thermal conductivity

Heat Transfer ◽  
2021 ◽  
Author(s):  
Ali Haider ◽  
Assad Ayub ◽  
Naeem Madassar ◽  
Rao K. Ali ◽  
Zulqurnain Sabir ◽  
...  
2019 ◽  
Vol 97 (8) ◽  
pp. 809-815 ◽  
Author(s):  
A. Haider ◽  
T. Salahuddin ◽  
M.Y. Malik

The current investigation is communicated to analyze the characteristics of Darcy–Forchheimer second-grade fluid flow enclosed by a deformable sheet in the existence of both variable thermal conductivity and magnetohydrodynamics. The leading nonlinear energy and momentum partial differential equations are converted into nonlinear ordinary differential equations by utilizing suitable analogous approach. Then the acquired nonlinear problem is numerically calculated by utilizing BVP4C (built in) technique in MATLAB. The influence of certain appropriate physical parameters, namely wall thickness, second-grade fluid, Hartmann number, power index, porosity parameter, inertia coefficient, Prandtl number, and thermal conductivity, on temperature and velocity is studied and deliberated in detail. Numerical calculations of Nusselt number and skin friction for distinct estimations of appearing parameters are analysed through graphs and tables.


2020 ◽  
Vol 30 (9) ◽  
pp. 4331-4347 ◽  
Author(s):  
Ambreen A. Khan ◽  
S. Naeem ◽  
R. Ellahi ◽  
Sadiq M. Sait ◽  
K. Vafai

Purpose This study aims to investigate the effect of two-dimensional Darcy-Forchheimer flow over second-grade fluid with linear stretching. Heat transfer through convective boundary conditions is taken into account. Design/methodology/approach Nonlinear coupled governing equations are tackled with a homotopy algorithm, while for numerical computation the computer software package BVPh 2.0 is used. The convergence analysis is also presented for the validation of analytical and numerical results. Findings Valuation for the impact of key parameters such as variable thermal conductivity, Dufour and Soret effects and variable magnetic field in an electrically conducted fluid on the velocity, concentration and temperature profiles are graphically illustrated. It is observed from the results that temperature distribution rises by Dufour number whereas concentration distribution rises by Soret number. The Forchheimer number and porosity parameter raise the skin friction coefficient. The permeable medium has a vital impact and can help in reining the rate of heat transfer. Practical implications The permeable medium has a vital impact and can help in reining the rate of heat transfer. Originality/value To the best of the authors’ knowledge, this study is reported for the first time.


2019 ◽  
pp. 312-312 ◽  
Author(s):  
Khan Ullah ◽  
Shehzad Ali ◽  
Abbasi Munir ◽  
Arshad Hussain

Double diffusion flow of Jeffrey fluid in presence of nanoparticles is studied theoretically under time dependent thermal conductivity. The considered nanoparticles are evaporated over convectively heated surface which moves periodically in its own plane. The appropriate dimensionless variables are employed to obtain the dimensionless forms of governing equations. We computed the analytical solution of nonlinear differential equations by utilizing homotopy analysis method. The present investigation reveals the features of various emerging parameters like Deborah number, combined parameter, oscillation frequency to stretching rate ratio, Prandtl number, Lewis number, thermophoresis parameter, Brownian motion parameter, nano Lewis number, modified Dufour parameter and Dufour solutal Lewis number. A useful enhancement in movement of nanoparticles is observed by utilizing the combined magnetic and porosity effects. Unlike traditional studies, present analysis is confined with the unsteady transportation phenomenon from periodically moving surfaces. Such computation may be attributable in flow results from tensional vibrations due to stretching and elastic surfaces. The simulation presented here can be attractable significance in the bioengineered nanoparticles manufacturing. It is observed that the heat transportation of nanoparticles may efficiently enhance through the utilization of variable thermal conductivity. The solutal concentration decreases with increasing Deborah number and Lewis number. It is further noted that the nano Lewis number causes reduction of nanoparticles concentration.


2010 ◽  
Vol 15 (4) ◽  
pp. 437-444 ◽  
Author(s):  
M. Kamran ◽  
M. Imran ◽  
M. Athar

Here the velocity field and the associated tangential stress corresponding to the rotational flow of a generalized second grade fluid within an infinite circular cylinder are determined by means of the Laplace and finite Hankel transforms. At time t = 0 the fluid is at rest and the motion is produced by the rotation of the cylinder around its axis with a time dependent angular velocity Ωt. The solutions that have been obtained are presented under series form in terms of the generalized G-functions. The similar solutions for the ordinary second grade and Newtonian fluids, performing the same motion, are obtained as special cases of our general solution.


Sign in / Sign up

Export Citation Format

Share Document