Temporal Sampling and Role of Flux Measurements for Subsurface Heterogeneous Characterization in Groundwater Basins Using Hydraulic Tomography

2021 ◽  
Author(s):  
Fei Liu ◽  
Tian‐Chyi Jim Yeh ◽  
Xianfang Song ◽  
Yu‐Li Wang ◽  
Jet‐Chau Wen ◽  
...  
2021 ◽  
Author(s):  
Bernard Heinesch ◽  
Colin Michel ◽  
Crist Amelynck ◽  
Niels Schoon ◽  
Ahsan Mozaffar ◽  
...  

<p>The presence of cows on a pasture considerably modifies exchanges of biogenic volatile organic compounds (BVOCs). By regulating the biomass present, they can have an impact on the constitutive flux (exchanges from soil and grass that are not induced by leaf wounding or trampling by cows) but they can also cause direct emissions from exhalation and indirect emissions by leaf injury (grazing), trampling and wastes. In this study conducted on the ICOS pasture site of Dorinne (Belgium), we disentangled these different sources/sinks for three oxygenated BVOCs commonly exchanged on grasslands (methanol, acetaldehyde and acetone), using a combination of turbulent flux measurements, enclosure flux measurements, tools to detect the presence and activity of cows in the footprint of the turbulent flux measurements and a flux footprint model. Direct exhalation emissions were low, representing only 2.3% and 10% of the spring total flux of methanol and acetone respectively. Comparison of grazed and non-grazed enclosures pointed out that emissions following leaf wounding were significant for all studied BVOCs, decreased exponentially with time to become negligible after maximum five days. Cow indirect emissions at the pasture scale (turbulent flux measurements) where likely dominated by grazing and were shown to be a major component of the total diurnal flux for each of the three studied BVOCs. Comparison with a hay meadow also showed that the temporal dynamics of those BVOC emissions were very different according to the grass management type, calling for specific parametrization in up-scaling emission models.</p>


2004 ◽  
Vol 31 (9) ◽  
pp. 941 ◽  
Author(s):  
Rob Reid ◽  
Juhong Liu

The analysis of transport systems involved in the uptake of trace metals in plants is complicated by technical difficulties associated with measurement of uptake and by the likely presence of multiple transporters with broad specificity. In this study, influx of Co was used to illustrate the problems involved and potential solutions. Issues surrounding kinetic descriptions of transport, multiple uptake systems, specificity of transporters, pH effects and the role of membrane surface charge in determining fluxes are addressed. A list of criteria for validation of flux measurements is provided.


2015 ◽  
Vol 12 (4) ◽  
pp. 1205-1221 ◽  
Author(s):  
H. Post ◽  
H. J. Hendricks Franssen ◽  
A. Graf ◽  
M. Schmidt ◽  
H. Vereecken

Abstract. The use of eddy covariance (EC) CO2 flux measurements in data assimilation and other applications requires an estimate of the random uncertainty. In previous studies, the (classical) two-tower approach has yielded robust uncertainty estimates, but care must be taken to meet the often competing requirements of statistical independence (non-overlapping footprints) and ecosystem homogeneity when choosing an appropriate tower distance. The role of the tower distance was investigated with help of a roving station separated between 8 m and 34 km from a permanent EC grassland station. Random uncertainty was estimated for five separation distances with the classical two-tower approach and an extended approach which removed systematic differences of CO2 fluxes measured at two EC towers. This analysis was made for a data set where (i) only similar weather conditions at the two sites were included, and (ii) an unfiltered one. The extended approach, applied to weather-filtered data for separation distances of 95 and 173 m gave uncertainty estimates in best correspondence with an independent reference method. The introduced correction for systematic flux differences considerably reduced the overestimation of the two-tower based uncertainty of net CO2 flux measurements and decreased the sensitivity of results to tower distance. We therefore conclude that corrections for systematic flux differences (e.g., caused by different environmental conditions at both EC towers) can help to apply the two-tower approach to more site pairs with less ideal conditions.


2013 ◽  
Vol 49 (7) ◽  
pp. 3881-3896 ◽  
Author(s):  
Ronglin Sun ◽  
Tian-Chyi Jim Yeh ◽  
Deqiang Mao ◽  
Menggui Jin ◽  
Wenxi Lu ◽  
...  

2010 ◽  
Vol 7 (6) ◽  
pp. 8521-8551
Author(s):  
F. J. W. Parmentier ◽  
J. van Huissteden ◽  
N. Kip ◽  
H. J. M. Op den Camp ◽  
M. S. M. Jetten ◽  
...  

Abstract. The behavior of tundra ecosystems is critical in the global carbon cycle due to their wet soils and large stores of carbon. Recently, cooperation was observed between methanotrophic bacteria and submerged Sphagnum, which reduces methane emissions in this type of vegetation and supplies CO2 for photosynthesis to the plant. Although proven in the lab, the differences that exist in methane emissions from inundated vegetation types with or without Sphagnum have not been linked to these bacteria before. To further investigate the importance of these bacteria, chamber flux measurements, microbial analysis and flux modeling were used to show that methane emissions in a submerged Sphagnum/sedge vegetation type were 50% lower compared to an inundated sedge vegetation without Sphagnum. From examining the results of the measurements, incubation experiments and flux modeling, it was found that it is likely that this difference is due to, for a large part, oxidation of methane below the water table by these endophytic bacteria. This result is important when upscaled spatially since oxidation by these bacteria plays a large role in 15% of the net methane emissions, while at the same time they promote photosynthesis of Sphagnum, and thus carbon storage. Future changes in the spread of submerged Sphagnum, in combination with the response of these bacteria to a warmer climate, could be an important factor in predicting future greenhouse gas exchange from tundra.


2020 ◽  
Vol 56 (12) ◽  
Author(s):  
Fei Liu ◽  
Tian‐Chyi Jim Yeh ◽  
Yu‐Li Wang ◽  
Xianfang Song ◽  
Xiaohui Lei ◽  
...  

1984 ◽  
Vol 247 (1) ◽  
pp. E75-E83 ◽  
Author(s):  
F. Muhlbacher ◽  
C. R. Kapadia ◽  
M. F. Colpoys ◽  
R. J. Smith ◽  
D. W. Wilmore

The effects of dexamethasone on nitrogen and amino acid metabolism in the dog were studied in order to gain insight into the role of glucocorticoids in accelerated proteolysis and altered metabolism of glutamine in catabolic illnesses. After dexamethasone administration at a dose of 0.44 mg X day-1 X kg-1, nitrogen balance shifted from slightly positive (+0.126 g N X day-1 X kg-1) to markedly negative (-0.278 g N X day-1 X kg-1). This was associated with a 23% fall in total free amino acid nitrogen in skeletal muscle, with 80% of the decline accounted for by a decrease in glutamine. Plasma glutamine concentration decreased by 26%, although total plasma free amino acid nitrogen was unchanged because of a 49% increase in alanine. The alterations in intracellular and circulating levels of glutamine were not accompanied by measurable changes in glutamine synthetase or glutaminase activities in skeletal muscle. Hindquarter amino acid flux measurements demonstrated that the decline in intracellular glutamine concentration was associated with a marked increase in glutamine efflux from skeletal muscle. This occurred in spite of minimal changes in the intracellular/extracellular glutamine gradient. It is concluded that accelerated muscle glutamine release caused by glucocorticoids is a major contributor to the decreased glutamine levels in muscle that occur during critical illnesses.


2007 ◽  
Vol 585 ◽  
pp. 73-92 ◽  
Author(s):  
J. E. GALVIN ◽  
C. M. HRENYA ◽  
R. D. WILDMAN

A combination of molecular dynamics simulations, theoretical predictions and previous experiments are used in a two-part study to determine the role of the Knudsen layer in rapid granular flows. First, a robust criterion for the identification of the thickness of the Knudsen layer is established: a rapid deterioration in Navier–Stokes order prediction of the heat flux is found to occur in the Knudsen layer. For (experimental) systems in which heat flux measurements are not easily obtained, a rule-of-thumb for estimating the Knudsen layer thickness follows, namely that such effects are evident within 2.5 (local) mean free paths of a given boundary. Secondly, comparisons of simulation and experimental data with Navier–Stokes order theory are used to provide a measure as to when Knudsen-layer effects become non-negligible. Specifically, predictions that do not account for the presence of a Knudsen layer appear reliable for Knudsen layers collectively composing up to 20% of the domain, whereas deterioration of such predictions becomes apparent when the domain is fully comprised of the Knudsen layer.


2021 ◽  
Author(s):  
Alireza Merikhi ◽  
Peter Berg ◽  
Markus Huettel

Abstract. The aquatic eddy covariance technique stands out as a method for benthic O2-flux measurements because it measures non-invasively, but in the conventional instruments, the spatial separation of the measuring locations of the velocity and O2 sensors causes a time-shift that can be substantial and difficult to correct. Here we introduce a triple O2-sensor-eddy covariance instrument (3OEC) that by positioning of the O2-sensors around the flow measuring volume allows eliminating these time-shifts through signal averaging. The new instrument was used to determine O2-production and consumption in an energetic coastal environment with highly permeable coral reef sands colonized by microphytobenthos. The measurement at ~10 m water depth revealed O2-fluxes that range among the highest reported for marine sediments despite relatively low organic content of the water and coarse sediment, indicating a central role of microphytobenthos for the carbon and nutrient cycling in the coral sand. High light utilization efficiency of the microphytobenthos and bottom currents increasing pore water exchange facilitated the high benthic production and respiration. The measurements documented a gradual transfer of the flux signal from the small turbulence generated at the sediment water interface to the larger wave-dominated eddies of the overlying water column with a delay influenced by the memory effect of eddies. These results demonstrate that the 3OEC can improve the precision of the flux measurements, including measurements in environments considered challenging for this technique, and thereby produce novel insights into the mechanisms that control flux. We consider the fluxes produced by this instrument for the permeable reef sands the most realistic achievable with present day technology.


Sign in / Sign up

Export Citation Format

Share Document