Mathematical model for evaluation of the effect of soil erosion on soil productivity

1987 ◽  
Vol 1 (2) ◽  
pp. 181-198 ◽  
Author(s):  
P. Todorovic ◽  
D. A. Woolhiser ◽  
K. G. Renard
2016 ◽  
Vol 75 (16) ◽  
Author(s):  
Xingwu Duan ◽  
Bing Liu ◽  
Zhijia Gu ◽  
Li Rong ◽  
Detai Feng

2016 ◽  
Vol 15 (1-2) ◽  
pp. 1
Author(s):  
Sri Hery Susilowati ◽  
Gelar Satya Budhi ◽  
I Wayan Rusastra

Alley cropping as a soil conservation technology owning certain advantages over terracing, particularly in that : a) costs are lower, b) soil productivity can be maintained, and c) it may be applied on all soil conditions. A disadvantage of alley cropping relates to the time taken for soil erosion control to become effective. However, over the longer time period, soil conversation control through alley cropping technology is more economical than that for terracing. The reviewed studies indicate that flemingia congesta is the most effective soil erosion controlling leguminous shrub,of those studied. Alley cropping is effective in maintaining land productivity. The synergic effect of soil productivity increase and soil erosion rate reduction. In some research,alley cropping systems have been shown to significantaly reduce farming costs per unit output,due to a decrease in manday (labour) use and other input reductions. In implementing alley cropping, land-holding status is one determining fector in farmers' willingness to apply the technology. That is why efforts to disseminate soil cinversation technology have often used some incentive in terms of land ownership rights for farmers. It is worthwhile to develop these incentives further, so that there is a legal certainty on cultivated land. Although alley cropping technology has currently been applied and adopted by farmers to a limited degree, there are still four main assues obstructing farmers' adoption of the tecnolog: a) small scale land-holding; b) limited capital ; c) production input availability; and d) lack of technology information


2019 ◽  
Vol 28 (3) ◽  
pp. 562-571
Author(s):  
А. A. Svetlitchnyi ◽  
A. V. Piatkova

In connection with the wide and ever increasing spread of erosion degradation of agricultural lands in Ukraine, the task of developing mathematical models and methods for calculating water erosion of soils corresponding to the current level of erosion study and the demands of soil protection practices is becoming increasingly important. The article is devoted to the development of a spatially distributed GIS-implemented mathematical model of rainstorm soil erosion, which accounts for most of the annual soil losses (in the Steppe zone, for example, about 90 %). The development of the model is based on the most theoretically and informationally grounded model for the Steppe and Forest-Steppe of Ukraine , “the logical-mathematical model of rainstorm soil outwash” developed by H. I. Shvebs (1974, 1981), as well as the results of theoretical and field studies and mathematical modeling of the slope runoff and water erosion of soil, carried out at the Department of Physical Geography and Environmental Management of Odessa I. I. Mechnikov National University in the 1990s - 2010s, and also the possibilities of modern geoinformation technologies. For the spatial implementation of the model, a raster model of spatial data and operators of the PCRaster GIS-package (University of Utrecht, the Netherlands) were used, integrated with the Basic programming language into a single system that provides an implementation of the computational algorithm. The developed physical-statistical model of soil erosion-sedimentation takes into account the peculiarities of the formation of slope runoff and soil outwash in conditions of excessive nonstationarity of heavy rainfall, as well as spatial heterogeneity of all major natural and economic factors of water erosion on a slope, including slope steepness, exposure, longitudinal and transverse forms of slopes, soil erodibility, structure of sown areas and anti-erosion measures. Checking the adequacy of the mathematical model was performed using observational data of four experimental catchments ; two runoff plots of the Moldavan water-balance station with total area of 0.08 ha, the Ploska catchment with area of 8.5 ha (Boguslav field experimental base of Ukrainian Hydrometeorological Institute) and the Sukha catchment with area of 63 ha (Veliko-Anadol water-balance station) with observation periods of 17-31 years. Comparison of the calculated average over the catchment area of mean annual values of rainstorm soil losses, with the corresponding values obtained from measurements on these catchments, made on the basis of Nash-Sutcliff efficiency criterion (NS), allowed us to evaluate the quality of the model as good (NS = 0.72).


2018 ◽  
Vol 22 (11) ◽  
pp. 6059-6086 ◽  
Author(s):  
Rubianca Benavidez ◽  
Bethanna Jackson ◽  
Deborah Maxwell ◽  
Kevin Norton

Abstract. Soil erosion is a major problem around the world because of its effects on soil productivity, nutrient loss, siltation in water bodies, and degradation of water quality. By understanding the driving forces behind soil erosion, we can more easily identify erosion-prone areas within a landscape to address the problem strategically. Soil erosion models have been used to assist in this task. One of the most commonly used soil erosion models is the Universal Soil Loss Equation (USLE) and its family of models: the Revised Universal Soil Loss Equation (RUSLE), the Revised Universal Soil Loss Equation version 2 (RUSLE2), and the Modified Universal Soil Loss Equation (MUSLE). This paper reviews the different sub-factors of USLE and RUSLE, and analyses how different studies around the world have adapted the equations to local conditions. We compiled these studies and equations to serve as a reference for other researchers working with (R)USLE and related approaches. Within each sub-factor section, the strengths and limitations of the different equations are discussed, and guidance is given as to which equations may be most appropriate for particular climate types, spatial resolution, and temporal scale. We investigate some of the limitations of existing (R)USLE formulations, such as uncertainty issues given the simple empirical nature of the model and many of its sub-components; uncertainty issues around data availability; and its inability to account for soil loss from gully erosion, mass wasting events, or predicting potential sediment yields to streams. Recommendations on how to overcome some of the uncertainties associated with the model are given. Several key future directions to refine it are outlined: e.g. incorporating soil loss from other types of soil erosion, estimating soil loss at sub-annual temporal scales, and compiling consistent units for the future literature to reduce confusion and errors caused by mismatching units. The potential of combining (R)USLE with the Compound Topographic Index (CTI) and sediment delivery ratio (SDR) to account for gully erosion and sediment yield to streams respectively is discussed. Overall, the aim of this paper is to review the (R)USLE and its sub-factors, and to elucidate the caveats, limitations, and recommendations for future applications of these soil erosion models. We hope these recommendations will help researchers more robustly apply (R)USLE in a range of geoclimatic regions with varying data availability, and modelling different land cover scenarios at finer spatial and temporal scales (e.g. at the field scale with different cropping options).


2018 ◽  
Vol 45 (1) ◽  
pp. 10-19 ◽  
Author(s):  
Caroline W. Maina ◽  
Joseph K. Sang ◽  
Benedict M. Mutua ◽  
James M. Raude

Abstract Soil erosion is one of the main soil degradation phenomena that threaten sustainable use of soil productivity thus affecting food security. In addition, it leads to reservoir storage capacity loss because of sedimentation. This not only affects water quantity but also water quality. Worldwide, annual loss in reservoir storage capacity due to sedimentation is 0.5 to 1%. Similarly, about 27% of land in Africa is largely degraded by erosion. As a result, there is need to minimize soil erosion and deposition through site specific estimation of soil erosion and deposition rates in the reservoirs. To achieve this, Fallout RadioNuclides (FRNs) are some of the methods in use. The most common radionuclides include; 137Cs, 210Pb and 7Be. Only few countries in Africa have exploited these FRNs. In these countries, 137Cs has been largely exploited but in some regions, it has been reported to be below minimum detection limit. Using 137Cs and 210Pb, maximum reference inventory in Africa is found to be 1450 and 2602 Bq/m2, respectively. However, there is minimal application of 7Be within the continent. Also, very little has been done in Africa to assess chronology and sedimentation rates of reservoirs using FRNs measured from sediment cores. In conclusion, a gap still exists on FRNs application in Africa in assessing soil erosion, deposition and reservoir sedimentation.


Proceedings ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 11 ◽  
Author(s):  
S. Nitheshnirmal ◽  
Ashutosh Bhardwaj ◽  
C. Dineshkumar ◽  
S. Abdul Rahaman

Soil erosion is a serious environmental threat amongst the prevailing major natural hazards which affects the livelihood of millions of people around the world. The deterioration of nutrient-rich topsoil can affect the sustainability of agriculture and various ecosystems by decreasing soil productivity. Conservation measures should be implemented in those regions which are critical to soil erosion. The identification of areas susceptible to soil erosion through prioritization of watershed can help in proper planning and implementation of suitable conservational measures. Therefore, in this study, the prioritization of 23 micro-watersheds present in the Dnyanganga watershed of Tapti River basin is carried out based on morphometric parameters and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). TanDEM-X 90m openly accessible DEM generated from SAR interferometry, obtained through DLR, is used for determining the morphometric parameters. These parameters are grouped into linear, areal and relief aspects. Initially, the relative weights of various morphometric parameters used in TOPSIS were determined using Saaty’s Analytical Hierarchy Process (AHP). Thereafter, the MCDM package in R software was utilized to implement TOPSIS. The micro-watersheds were classified into very high (0.459–0.357), high (0.326–0.240), moderate (0.213–0.098), and low (0.096–0.088) prioritization levels based on the TOPSIS highest closeness (Ci+) to ideal solution. It is evident from the results that micro-watersheds (MW10, MW18, MW19, MW2, MW11, and MW17) are highly susceptible to soil erosion and thus, conservation measures can be carried out in these micro-watersheds with the priority to ensure the sustainability of future agriculture by preventing excessive soil loss through erosion.


Sign in / Sign up

Export Citation Format

Share Document