Quantifying soil erosion effects on soil productivity in the dry-hot valley, southwestern China

2016 ◽  
Vol 75 (16) ◽  
Author(s):  
Xingwu Duan ◽  
Bing Liu ◽  
Zhijia Gu ◽  
Li Rong ◽  
Detai Feng
2016 ◽  
Vol 15 (1-2) ◽  
pp. 1
Author(s):  
Sri Hery Susilowati ◽  
Gelar Satya Budhi ◽  
I Wayan Rusastra

Alley cropping as a soil conservation technology owning certain advantages over terracing, particularly in that : a) costs are lower, b) soil productivity can be maintained, and c) it may be applied on all soil conditions. A disadvantage of alley cropping relates to the time taken for soil erosion control to become effective. However, over the longer time period, soil conversation control through alley cropping technology is more economical than that for terracing. The reviewed studies indicate that flemingia congesta is the most effective soil erosion controlling leguminous shrub,of those studied. Alley cropping is effective in maintaining land productivity. The synergic effect of soil productivity increase and soil erosion rate reduction. In some research,alley cropping systems have been shown to significantaly reduce farming costs per unit output,due to a decrease in manday (labour) use and other input reductions. In implementing alley cropping, land-holding status is one determining fector in farmers' willingness to apply the technology. That is why efforts to disseminate soil cinversation technology have often used some incentive in terms of land ownership rights for farmers. It is worthwhile to develop these incentives further, so that there is a legal certainty on cultivated land. Although alley cropping technology has currently been applied and adopted by farmers to a limited degree, there are still four main assues obstructing farmers' adoption of the tecnolog: a) small scale land-holding; b) limited capital ; c) production input availability; and d) lack of technology information


Author(s):  
Siwen Feng ◽  
Lu Wu ◽  
Boyi Liang ◽  
Hongya Wang ◽  
Hongyan Liu ◽  
...  

Forestation as part of the Returning Farmland to Forest Project was implemented to mitigate soil erosion in southwestern China. However, whether forestation has effectively reduced soil erosion in southwestern China remains unclear, mostly because of the lack of monitoring forest cover change and soil erosion at watershed scales. We interpreted forest cover change from satellite images and simulated soil erosion changes for the period of 1986–2018 in the Chong’an River Basin with the Water and Tillage Erosion Model and Sediment Delivery Model. Our results show that the change in forest cover has the highest correlation coefficient with the sediment yield in the watershed, with an obvious inverse phase relationship between them for all the simulated years. From 2002 to 2014, large-scale forestation and frequent droughts caused the forest cover to vary, resulting in significant changes in the annual soil erosion amount. Because crevices favoring tree growth are more developed in limestone than in dolomite, the forest cover reduction on dolomite is significantly higher than that on limestone under severe droughts in karst areas. Our study implied that the function of forestation in preventing soil erosion depends on lithology in karst areas.


2018 ◽  
Vol 22 (11) ◽  
pp. 6059-6086 ◽  
Author(s):  
Rubianca Benavidez ◽  
Bethanna Jackson ◽  
Deborah Maxwell ◽  
Kevin Norton

Abstract. Soil erosion is a major problem around the world because of its effects on soil productivity, nutrient loss, siltation in water bodies, and degradation of water quality. By understanding the driving forces behind soil erosion, we can more easily identify erosion-prone areas within a landscape to address the problem strategically. Soil erosion models have been used to assist in this task. One of the most commonly used soil erosion models is the Universal Soil Loss Equation (USLE) and its family of models: the Revised Universal Soil Loss Equation (RUSLE), the Revised Universal Soil Loss Equation version 2 (RUSLE2), and the Modified Universal Soil Loss Equation (MUSLE). This paper reviews the different sub-factors of USLE and RUSLE, and analyses how different studies around the world have adapted the equations to local conditions. We compiled these studies and equations to serve as a reference for other researchers working with (R)USLE and related approaches. Within each sub-factor section, the strengths and limitations of the different equations are discussed, and guidance is given as to which equations may be most appropriate for particular climate types, spatial resolution, and temporal scale. We investigate some of the limitations of existing (R)USLE formulations, such as uncertainty issues given the simple empirical nature of the model and many of its sub-components; uncertainty issues around data availability; and its inability to account for soil loss from gully erosion, mass wasting events, or predicting potential sediment yields to streams. Recommendations on how to overcome some of the uncertainties associated with the model are given. Several key future directions to refine it are outlined: e.g. incorporating soil loss from other types of soil erosion, estimating soil loss at sub-annual temporal scales, and compiling consistent units for the future literature to reduce confusion and errors caused by mismatching units. The potential of combining (R)USLE with the Compound Topographic Index (CTI) and sediment delivery ratio (SDR) to account for gully erosion and sediment yield to streams respectively is discussed. Overall, the aim of this paper is to review the (R)USLE and its sub-factors, and to elucidate the caveats, limitations, and recommendations for future applications of these soil erosion models. We hope these recommendations will help researchers more robustly apply (R)USLE in a range of geoclimatic regions with varying data availability, and modelling different land cover scenarios at finer spatial and temporal scales (e.g. at the field scale with different cropping options).


2018 ◽  
Vol 45 (1) ◽  
pp. 10-19 ◽  
Author(s):  
Caroline W. Maina ◽  
Joseph K. Sang ◽  
Benedict M. Mutua ◽  
James M. Raude

Abstract Soil erosion is one of the main soil degradation phenomena that threaten sustainable use of soil productivity thus affecting food security. In addition, it leads to reservoir storage capacity loss because of sedimentation. This not only affects water quantity but also water quality. Worldwide, annual loss in reservoir storage capacity due to sedimentation is 0.5 to 1%. Similarly, about 27% of land in Africa is largely degraded by erosion. As a result, there is need to minimize soil erosion and deposition through site specific estimation of soil erosion and deposition rates in the reservoirs. To achieve this, Fallout RadioNuclides (FRNs) are some of the methods in use. The most common radionuclides include; 137Cs, 210Pb and 7Be. Only few countries in Africa have exploited these FRNs. In these countries, 137Cs has been largely exploited but in some regions, it has been reported to be below minimum detection limit. Using 137Cs and 210Pb, maximum reference inventory in Africa is found to be 1450 and 2602 Bq/m2, respectively. However, there is minimal application of 7Be within the continent. Also, very little has been done in Africa to assess chronology and sedimentation rates of reservoirs using FRNs measured from sediment cores. In conclusion, a gap still exists on FRNs application in Africa in assessing soil erosion, deposition and reservoir sedimentation.


1987 ◽  
Vol 1 (2) ◽  
pp. 181-198 ◽  
Author(s):  
P. Todorovic ◽  
D. A. Woolhiser ◽  
K. G. Renard

Sign in / Sign up

Export Citation Format

Share Document