scholarly journals Spatially distributed GIS-realized mathematical model of rainstorm erosion losses of soil

2019 ◽  
Vol 28 (3) ◽  
pp. 562-571
Author(s):  
А. A. Svetlitchnyi ◽  
A. V. Piatkova

In connection with the wide and ever increasing spread of erosion degradation of agricultural lands in Ukraine, the task of developing mathematical models and methods for calculating water erosion of soils corresponding to the current level of erosion study and the demands of soil protection practices is becoming increasingly important. The article is devoted to the development of a spatially distributed GIS-implemented mathematical model of rainstorm soil erosion, which accounts for most of the annual soil losses (in the Steppe zone, for example, about 90 %). The development of the model is based on the most theoretically and informationally grounded model for the Steppe and Forest-Steppe of Ukraine , “the logical-mathematical model of rainstorm soil outwash” developed by H. I. Shvebs (1974, 1981), as well as the results of theoretical and field studies and mathematical modeling of the slope runoff and water erosion of soil, carried out at the Department of Physical Geography and Environmental Management of Odessa I. I. Mechnikov National University in the 1990s - 2010s, and also the possibilities of modern geoinformation technologies. For the spatial implementation of the model, a raster model of spatial data and operators of the PCRaster GIS-package (University of Utrecht, the Netherlands) were used, integrated with the Basic programming language into a single system that provides an implementation of the computational algorithm. The developed physical-statistical model of soil erosion-sedimentation takes into account the peculiarities of the formation of slope runoff and soil outwash in conditions of excessive nonstationarity of heavy rainfall, as well as spatial heterogeneity of all major natural and economic factors of water erosion on a slope, including slope steepness, exposure, longitudinal and transverse forms of slopes, soil erodibility, structure of sown areas and anti-erosion measures. Checking the adequacy of the mathematical model was performed using observational data of four experimental catchments ; two runoff plots of the Moldavan water-balance station with total area of 0.08 ha, the Ploska catchment with area of 8.5 ha (Boguslav field experimental base of Ukrainian Hydrometeorological Institute) and the Sukha catchment with area of 63 ha (Veliko-Anadol water-balance station) with observation periods of 17-31 years. Comparison of the calculated average over the catchment area of mean annual values of rainstorm soil losses, with the corresponding values obtained from measurements on these catchments, made on the basis of Nash-Sutcliff efficiency criterion (NS), allowed us to evaluate the quality of the model as good (NS = 0.72).

2021 ◽  
Vol 30 (3) ◽  
pp. 571-580
Author(s):  
Оleksandr О. Svitlychnyi ◽  
Nadiia G. Chemerys

The article is devoted to the problem of sustainable use of agricultural lands in conditions of active manifestation of water soil erosion, which is typical for all natural zones of Ukraine, but to the greatest extent – for the Forest-Steppe and Steppe zone. The aim of the article is a spatially distributed quantitative assessment and forecast of soil erosion losses and the development on this basis of recommendations to optimize the use of agricultural land on the example of the Pidhayetskyi district of the Ternopil region. The area is located within the Western region of Ukraine with a fairly high intensity of water erosion, where in accordance with the long-term climate forecast a further increase in erosion hazard of land is expected. A quantitative assessment of soil erosion losses for the basic period (1961–1990) and forecast periods (2031–2050 and 2081–2100) was carried out using a spatially distributed physical-statistical GIS-model of soil erosion-sedimentation developed at the Department of Physical Geography, Nature Management and Geoinformation Technologies of Odesa I. I. Mechnikov National University. Spatial realization of the model performed using the analytical capabilities of the Software for Environmental Modeling PCRaster (University of Utrecht, Netherlands). The forecast of the changes in the hydrometeorological conditions of water soil erosion was made using the forecast of monthly average air temperatures and monthly average precipitation, developed at the Ukrainian Hydrometeorological Institute. It established that most of the arable land (about 52 %) of Pidhayetskyi district is erosively dangerous. Due to the projected increase in summer rainfall in the middle and at the end of this century, further intensification of soil erosion is expected, especially in 2031–2050, when soil losses on arable land will increase to 16.9 t/ha/year, and only due to rainstorm erosion. Soil losses by meltwater will be insignificant. Based on the calculations, it was concluded that it is impossible to protect the agricultural lands of the region from erosional degradation without withdrawal from the arable land about 8.15 thousand hectares (28) of the most erosion-hazardous lands (with annual soil losses exceeding 20 tons per a hectare), changing the structure of sown areas and introduction a soil-protective adaptive-landscape farming system over a significant area.


2014 ◽  
Vol 38 (2) ◽  
pp. 129-139 ◽  
Author(s):  
Pedro Luiz Terra Lima ◽  
Marx Leandro Naves Silva ◽  
Nilton Curi ◽  
John Quinton

Adequate soil management can create favorable conditions to reduce erosion and water runoff, consequently increase water soil recharge. Among management systems intercropping is highly used, especially for medium and small farmers. It is a system where two or more crops with different architectures and vegetative cycles are explored simultaneously at the same location. This research investigated the effects of maize intercropped with jack bean on soil losses due to water erosion, estimate C factor of Universal Soil Losses Equation (USLE) and how it can be affected by soil coverage. The results obtained also contribute to database generation, important to model and estimate soil erosion. Total soil loss by erosion caused by natural rain, at Lavras, Minas Gerais, Brazil, were: 4.20, 1.86, 1.38 and 1.14 Mg ha-1, respectively, for bare soil, maize, jack bean and the intercropping of both species, during evaluated period. Values of C factor of USLE were: 0.039, 0.054 and 0.077 Mg ha Mg-1 ha-1 for maize, jack bean and intercropping between both crops, respectively. Maize presented lower vegetation cover index, followed by jack beans and consortium of the studied species. Intercropping between species showed greater potential on soil erosion control, since its cultivation resulted in lower soil losses than single crops cultivation, and this aspect is really important for small and medium farmers in the studied region.


1983 ◽  
Vol 63 (3) ◽  
pp. 607-617 ◽  
Author(s):  
E. DE JONG ◽  
C. B. M. BEGG ◽  
R. G. KACHANOSKI

137Cs from the atmospheric testing of nuclear devices in the 1950s and 1960s was used to estimate soil erosion in eight small basins in hummocky topography. Three basins had not been cultivated since the 1950s and in these 137Cs showed little or no separation according to landscape position. In the cultivated basins, 137Cs increased from the top to the bottom of the slopes reflecting the simultaneous occurrence of soil erosion on the upper slopes and deposition on the lower slopes. The redistribution of 137Cs was least in a cultivated basin where water erosion was minimal. From the 137Cs it was estimated that over the past 20–25 yr the upper slopes in the cultivated basins had lost 20–60 kg soil/m2, whereas the lower slopes had gained 25–80 kg/m2. Some middle-slope positions lost soil, others gained. An attempt to construct 137Cs and soil balances for each of the cultivated basins was only partially successful. The inability to accurately delineate areas of erosion and areas of deposition is probably the major obstacle in calculating accurate balances for the basins. The 137Cs balances did show promise of being able to separate soil losses by wind and water erosion. Key words: Water erosion, wind erosion, 137Cs, deposition, universal soil loss equation


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Eric Flavien Mbiakouo-Djomo ◽  
Ebénézer Njeugna ◽  
Denis Tcheukam-Toko ◽  
Didier Fokwa

The area of Nylon represents a sensible and vulnerable environment where water erosion is the cause of many soil losses contributing to the production and movement of sediments from the upstream to the lowest depths. The high level of rainfall in this town, soil texture (sand-clay-silt), and the anarchic occupation of the area play a part in the important deterioration of the bare ground on the upstream of the catchment area. This causes with time an instability of structures and living places which can lead to their progressive disappearance. In order to assess the quantities of displaced sediments, the studies on the quantification of soil moved annually by water erosion are carried out. A direct method is used consisting in using a minisimulator of rain (NEME) in order to understand the phenomena involved and assess the quantity of sediments which can be moved. It helps in assessing erosion caused by the rain and extrapolating results over the catchment area of the chosen field of study. USLE relation has permit to make an extrapolation of the quantity of soil affected, and the result shows that the average potential of loss of soil is 153.57 t/ha/annum.


2020 ◽  
Author(s):  
Kirill Maltsev ◽  
Oleg Yermolaev

<p>A quantitative assessment of the potential soil erosion on arable land in the European part of Russia (EPR) was carried out. The total area of arable land of the EPR is about 650,000 km<sup>2</sup>. The majority of the population of Russia lives here - about 95 million people. The level of generalization of work is regional and corresponds to a scale of 1: 500,000.</p><p>As a research method, mathematical modeling based on modified for Russia’s natural conditions USLE equation for calculating potential soil loss from erosion. Another leading method for assessing soil erosion and presenting results is GIS. A raster model of data presentation was used in the calculations, including a model of slope angles, slope lengths, soil erodibility, erosive rainfall potential, water reserves in snow, intra-annual redistribution of rainfall, and land use types.</p><p>New data have been obtained on the value of soil erosion losses during melt and storm runoff periods and total annual losses. An electronic map of soil erosion losses on arable lands of the European part of Russia has been compiled, which allows determining spatial features of soil erosion rates.</p><p>The average soil erosion losses, taking into account the soil-protective coefficients of agricultural crops for the study area, are 4.04 t / ha per year. In annual soil losses due to erosion, storm 3.78 prevails, soil loss from melt water is almost an order of magnitude less - t / ha 0.26. About half of the territory is located in conditions under which the soil loss does not exceed 0.5 t / ha per year.</p><p>The rate of potential soil erosion on arable land in the European part of Russia naturally decreases in the direction from the taiga-forest to the steppe landscape zone. The band of maximum potential soil erosion of the west-east sub-latitudinal strike is clearly distinguished, confined to the subzone of mixed and broad-leaved forests with very high plowing. A comparative analysis of our data and data obtained in the mid-1980s showed a reduction in soil loss from water erosion in all landscape zones. In addition, a comparative analysis of the data obtained by us and the data for the European Union was carried out, which showed that the soil losses on the EPR are slightly higher.</p>


2014 ◽  
Vol 18 (9) ◽  
pp. 3763-3775 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959–2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha−1 yr−1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha−1 yr−1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.


2021 ◽  
pp. 104742
Author(s):  
Noor Fadzilah Yusof ◽  
Tukimat Lihan ◽  
Wan Mohd Razi Idris ◽  
Zulfahmi Ali Rahman ◽  
Muzneena Ahmad Mustapha ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Alexandra Pagáč Mokrá ◽  
Jakub Pagáč ◽  
Zlatica Muchová ◽  
František Petrovič

Water erosion is a phenomenon that significantly damages agricultural land. The current land fragmentation in Slovakia and the complete ambiguity of who owns it leads to a lack of responsibility to care for the land in its current condition, which could affect its sustainability in the future. The reason so much soil has eroded is obvious when looking at current land management, with large fields, a lack of windbreaks between them, and no barriers to prevent soil runoff. Land consolidation might be the solution. This paper seeks to evaluate redistributed land and, based on modeling by the Universal Soil Loss Equation (USLE) method, to assess the degree of soil erosion risk. Ownership data provided information on how many owners and what amount of area to consider, while taking into account new conditions regarding water erosion. The results indicate that 2488 plots of 1607 owners which represent 12% of the model area are still endangered by water erosion, even after the completion of the land consolidation project. The results also presented a way of evaluating the territory and aims to trigger a discussion regarding an unambiguous definition of responsibility in the relationship between owner and user.


2021 ◽  
Vol 11 (15) ◽  
pp. 6763
Author(s):  
Mongi Ben Zaied ◽  
Seifeddine Jomaa ◽  
Mohamed Ouessar

Soil erosion remains one of the principal environmental problems in arid regions. This study aims to assess and quantify the variability of soil erosion in the Koutine catchment using the RUSLE (Revised Universal Soil Loss Equation) model. The Koutine catchment is located in an arid area in southeastern Tunisia and is characterized by an annual mean precipitation of less than 200 mm. The model was used to examine the influence of topography, extreme rainstorm intensity and soil texture on soil loss. The data used for model validation were obtained from field measurements by monitoring deposited sediment in settlement basins of 25 cisterns (a traditional water harvesting and storage technique) over 4 years, from 2015 to 2018. Results showed that slope is the most controlling factor of soil loss. The average annual soil loss in monitoring sites varies between 0.01 and 12.5 t/ha/y. The storm events inducing the largest soil losses occurred in the upstream part of the Koutine catchment with a maximum value of 7.3 t/ha per event. Soil erosion is highly affected by initial and preceding soil conditions. The RUSLE model reasonably reproduced (R2 = 0.81) the spatiotemporal variability of measured soil losses in the study catchment during the observation period. This study revealed the importance of using the cisterns in the data-scarce dry areas as a substitute for the classic soil erosion monitoring fields. Besides, combining modeling of outputs and field measurements could improve our physical understanding of soil erosion processes and their controlling factors in an arid catchment. The study results are beneficial for decision-makers to evaluate the existing soil conservation and water management plans, which can be further adjusted using appropriate soil erosion mitigation options based on scientific evidence.


2016 ◽  
Vol 28 (2) ◽  
pp. 682-690 ◽  
Author(s):  
Tomohiro Nishigaki ◽  
Makoto Shibata ◽  
Soh Sugihara ◽  
Antoine David Mvondo‐Ze ◽  
Shigeru Araki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document