The Ocean Basins and Margins – Ed. Alan E. M. Nairn and Francis G. Stehli-.-Volume 1: The South Atlantic, Volume 2: The North Atlantic, Volume 3: The Gulf of Mexico and the Caribbean. – 583 + 598 + 706 pp. New York-London: Plenum Press 1973-1975. ISBN 0-306-37771-3 + 0-306-37772-1 + 0-306-37773-X. $ 45.60, $ 45.60, $ 59.40

1978 ◽  
Vol 63 (2) ◽  
pp. 286-288
Author(s):  
H. Caspers
1976 ◽  
Vol 54 (9) ◽  
pp. 1538-1541
Author(s):  
R. E. Zurbrigg ◽  
W. B. Scott

A new myctophid species, Diaphus hudsoni, was captured in the South Atlantic Ocean, and is described. It is similar to Diaphus subtilis Nafpaktitis, which occurs in the North Atlantic Ocean, but is definitely distinct with its slender, more numerous gill rakers (total 23–25), and non-continuous AOp–Prc series. The AO series numbers 5 + 5–6. The holotype is deposited in the Royal Ontario Museum, ROM 27569.


1974 ◽  
Vol 31 (10) ◽  
pp. 1666-1667
Author(s):  
Dale R. Calder

Boreohydra simplex was collected at a depth of 400 m in Cabot Strait, eastern Canada; this solitary, mud-dwelling hydroid is previously unreported from the western North Atlantic. Elsewhere, it has been found along the coasts of Scandinavia, Britain, and Iceland in the North Atlantic, and from South Georgia in the South Atlantic.


2007 ◽  
Vol 7 (1) ◽  
pp. 39-42 ◽  
Author(s):  
Alexandra Elaine Rizzo ◽  
Antonia Cecília Zacagnini Amaral

Paralacydoniid polychaetes belonging to the genus Paralacydonia Fauvel 1913 were collected during the REVIZEE Program/South Score/Benthos ("Avaliação do Potencial Sustentável dos Recursos Vivos na Zona Econômica Exclusiva") on the outer shelf and continental slope off the south-southeastern coast of Brazil between 156 and 400 m depth. This new report extends the known geographic distribution of the family, which had previously been recorded in the North Atlantic as far as the Gulf of Mexico. Paralacydonia is here treated as monotypic; P. mortenseni Augener 1924 and P. weberi Horst 1923 are considered synonyms of Paralacydonia paradoxa Fauvel 1913.


2019 ◽  
Vol 32 (5) ◽  
pp. 1483-1500 ◽  
Author(s):  
Timothy Smith ◽  
Patrick Heimbach

Abstract Insights from the RAPID–MOCHA observation network in the North Atlantic have motivated a recent focus on the South Atlantic, where water masses are exchanged with neighboring ocean basins. In this study, variability in the South Atlantic meridional overturning circulation (SAMOC) at 34°S is attributed to global atmospheric forcing using an inverse modeling approach. The sensitivity of the SAMOC to atmospheric state variables is computed with the adjoint of the Massachusetts Institute of Technology general circulation model, which is fit to 20 years of observational data in a dynamically consistent framework. The dynamical pathways highlighted by these sensitivity patterns show that the domain of influence for the SAMOC is broad, covering neighboring ocean basins even on short time scales. This result differs from what has previously been shown in the North Atlantic, where Atlantic meridional overturning circulation (AMOC) variability is largely governed by dynamics confined to that basin. The computed sensitivities are convolved with surface atmospheric state variability from ERA-Interim to attribute the influence of each external forcing variable (e.g., wind stress, precipitation) on the SAMOC from 1992 to 2011. Here, local wind stress perturbations are shown to dominate variability on seasonal time scales while buoyancy forcing plays a minor role, confirming results from past forward perturbation experiments. Interannual variability, however, is shown to have originated from remote locations across the globe, including a nontrivial component originating from the tropical Pacific. The influence of atmospheric forcing emphasizes the importance of continuous widespread observations of the global atmospheric state for attributing observed AMOC variability.


2019 ◽  
Author(s):  
Hamed D. Ibrahim

North and South Atlantic lateral volume exchange is a key component of the Atlantic Meridional Overturning Circulation (AMOC) embedded in Earth’s climate. Northward AMOC heat transport within this exchange mitigates the large heat loss to the atmosphere in the northern North Atlantic. Because of inadequate climate data, observational basin-scale studies of net interbasin exchange between the North and South Atlantic have been limited. Here ten independent climate datasets, five satellite-derived and five analyses, are synthesized to show that North and South Atlantic climatological net lateral volume exchange is partitioned into two seasonal regimes. From late-May to late-November, net lateral volume flux is from the North to the South Atlantic; whereas from late-November to late-May, net lateral volume flux is from the South to the North Atlantic. This climatological characterization offers a framework for assessing seasonal variations in these basins and provides a constraint for climate models that simulate AMOC dynamics.


2021 ◽  
Author(s):  
Pedro Jiménez-Guerrero ◽  
Nuno Ratola

AbstractThe atmospheric concentration of persistent organic pollutants (and of polycyclic aromatic hydrocarbons, PAHs, in particular) is closely related to climate change and climatic fluctuations, which are likely to influence contaminant’s transport pathways and transfer processes. Predicting how climate variability alters PAHs concentrations in the atmosphere still poses an exceptional challenge. In this sense, the main objective of this contribution is to assess the relationship between the North Atlantic Oscillation (NAO) index and the mean concentration of benzo[a]pyrene (BaP, the most studied PAH congener) in a domain covering Europe, with an emphasis on the effect of regional-scale processes. A numerical simulation for a present climate period of 30 years was performed using a regional chemistry transport model with a 25 km spatial resolution (horizontal), higher than those commonly applied. The results show an important seasonal behaviour, with a remarkable spatial pattern of difference between the north and the south of the domain. In winter, higher BaP ground levels are found during the NAO+ phase for the Mediterranean basin, while the spatial pattern of this feature (higher BaP levels during NAO+ phases) moves northwards in summer. These results show deviations up to and sometimes over 100% in the BaP mean concentrations, but statistically significant signals (p<0.1) of lower changes (20–40% variations in the signal) are found for the north of the domain in winter and for the south in summer.


Sign in / Sign up

Export Citation Format

Share Document