LoRa ‐aided outdoor localization system: RSSI or TDoA ?

2021 ◽  
Author(s):  
Eric Hideo Yoshitome ◽  
João Vitor Rodrigues Cruz ◽  
Marcos Eduardo Pivaro Monteiro ◽  
João Luiz Rebelatto
2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Ping Yi ◽  
Minjie Yu ◽  
Ziqiao Zhou ◽  
Wei Xu ◽  
Qingquan Zhang ◽  
...  

Indoor localization, an emerging technology in location based service (LBS), is now playing a more and more important role both in commercial and in civilian industry. Global position system (GPS) is the most popular solution in outdoor localization field, and the accuracy is around 10 meter error in positioning. However, with complex obstacles in buildings, problems rise in the “last mile” of localization field, which encourage a momentum of indoor localization. The traditional indoor localization system is either range-based or fingerprinting-based, which requires a lot of time and efforts to do the predeployment. In this paper, we present a 3-dimensional on-demand indoor localization system (3D-ODIL), which can be fingerprint-free and deployed rapidly in a multistorey building. The 3D-ODIL consists of two phases, vertical localization and horizontal localization. On vertical direction, we propose multistorey differential (MSD) algorithm and implement it to fulfill the vertical localization, which can greatly reduce the number of anchors deployed. We use enhanced field division (EFD) algorithm to conduct the horizontal localization. EFD algorithm is a range-free algorithm, the main idea of which is to dynamically divide the field within different signature area and position the target. The accuracy and performance have been validated through our extensive analysis and systematic experiments.


Sign in / Sign up

Export Citation Format

Share Document