iLoc: A Low-Cost Low-Power Outdoor Localization System for Internet of Things

Author(s):  
Kang Hu ◽  
Yuhao Chen ◽  
Shibo He ◽  
Zhiguo Shi ◽  
Jiming Chen ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2613 ◽  
Author(s):  
Collins Burton Mwakwata ◽  
Hassan Malik ◽  
Muhammad Mahtab Alam ◽  
Yannick Le Moullec ◽  
Sven Parand ◽  
...  

Narrowband internet of things (NB-IoT) is a recent cellular radio access technology based on Long-Term Evolution (LTE) introduced by Third-Generation Partnership Project (3GPP) for Low-Power Wide-Area Networks (LPWAN). The main aim of NB-IoT is to support massive machine-type communication (mMTC) and enable low-power, low-cost, and low-data-rate communication. NB-IoT is based on LTE design with some changes to meet the mMTC requirements. For example, in the physical (PHY) layer only single-antenna and low-order modulations are supported, and in the Medium Access Control (MAC) layers only one physical resource block is allocated for resource scheduling. The aim of this survey is to provide a comprehensive overview of the design changes brought in the NB-IoT standardization along with the detailed research developments from the perspectives of Physical and MAC layers. The survey also includes an overview of Evolved Packet Core (EPC) changes to support the Service Capability Exposure Function (SCEF) to manage both IP and non-IP data packets through Control Plane (CP) and User Plane (UP), the possible deployment scenarios of NB-IoT in future Heterogeneous Wireless Networks (HetNet). Finally, existing and emerging research challenges in this direction are presented to motivate future research activities.


This paper presents the design and realization of low-cost and ultra-low-power consuming remote transfer units (RTUs), working as communication gateways for collecting, aggregating, and forwarding IoT data to information centers (servers) in the cloud for further processing and data mining. Two types of RTUs, targeting different application scenarios and utilizing different communication standards, were designed – one, based on the General Packet Radio Service (GPRS) standard, and another – on the NarrowBand Internet of Things (NB-IoT) standard. The developed RTUs were experimentally tested and their use was successfully demonstrated in different IoT systems.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4651 ◽  
Author(s):  
Shadia Awadallah ◽  
David Moure ◽  
Pedro Torres-González

In the last few years, there has been a huge interest in the Internet of Things (hereinafter IoT) field. Among the large number of IoT technologies, the low-power wide-area network (hereinafter LPWAN) has emerged providing low power, low data-rate communication over long distances, enabling battery-operated devices to operate for long time periods. This paper introduces an application of long-range (hereinafter LoRa) technology, one of the most popular LPWANs, to volcanic surveillance. The first low-power and low-cost wireless network based on LoRa to monitor the soil temperature in thermal anomaly zones in volcanic areas has been developed. A total of eight thermometers (end devices) have been deployed on a Teide volcano in Tenerife (Canary Islands). In addition, a repeater device was developed to extend the network range when the gateway did not have a line of sight connection with the thermometers. Combining LoRa communication capabilities with microchip microcontrollers (end devices and repeater) and a Raspberry Pi board (gateway), three main milestones have been achieved: (i) extreme low-power consumption, (ii) real-time and proper temperature acquisition, and (iii) a reliable network operation. The first results are shown. These results provide enough quality for a proper volcanic surveillance.


2019 ◽  
Vol 29 (07) ◽  
pp. 2050111
Author(s):  
Basma H. Mohamed ◽  
Ahmed Taha ◽  
Ahmed Shawky ◽  
Essraa Ahmed ◽  
Ali Mohamed ◽  
...  

With the new age of technology and the release of the Internet of Things (IoT) revolution, there is a need to connect a wide range of devices with varying throughput and performance requirements. In this paper, a digital transmitter of NarrowBand Internet of Things (NB-IoT) is proposed targeting very low power and delay-insensitive IoT applications with low throughput requirements. NB-IoT is a new cellular technology introduced by 3GPP in release 13 to provide wide-area coverage for the IoT. The low-cost receivers for such devices should have very low complexity, consume low power and hence run for several years. In this paper, the implementation of the data path chain of digital uplink transmitter is presented. The standard specifications are studied carefully to determine the required design parameters for each block. And the design is synthesized in UMC 130-nm technology.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 881 ◽  
Author(s):  
José Miguel Paredes-Parra ◽  
Antonio Javier García-Sánchez ◽  
Antonio Mateo-Aroca ◽  
Angel Molina-Garcia

This paper proposes a wireless low-cost solution based on long-range (LoRa) technologyable to communicate with remote PV power plants, covering long distances with minimum powerconsumption and maintenance. This solution includes a low-cost open-source technology atthe sensor layer and a low-power wireless area network (LPWAN) at the communication layer,combining the advantages of long-range coverage and low power demand. Moreover, it offers anextensive monitoring system to exchange data in an Internet-of-Things (IoT) environment. A detaileddescription of the proposed system at the PV module level of integration is also included in the paper,as well as detailed information regarding LPWAN application to the PV power plant monitoringproblem. In order to assess the suitability of the proposed solution, results collected in real PVinstallations connected to the grid are also included and discussed.


2020 ◽  
Vol 13 (2) ◽  
pp. 159-167
Author(s):  
Robin Cyriac ◽  
Marimuthu Karuppiah

Internet of Things will be inevitable in all walks of our life, where it becomes necessary for all smart devices to have end-to-end data transfer capability. These low power and low-cost end devices need to be enabled with IPv6 address and corresponding routing mechanism for participating in Internet of Things environment. To enable fast and efficient routing in Internet of Things network and constrained with limited energy, Routing Protocol for Low-power Lossy Network (RPL) has been developed by ROLL-Work Group. As RPL is proactive and energyconserving, it has become the most promising routing protocol for Internet of Things. Nodes in Low-power Lossy Network (LLN) are designed to conserve energy by maintaining radio silence over 90% of its lifetime. It is possible to further improve the node’s lifetime and thereby considerably extending network’s longevity by performing sensible routing. Different routing structure in Internet of Things network can be attained by carefully crafting the objective function for the same set of nodes which satisfies different goals. This paper focuses on different objective functions in RPL which have been developed over time with the emphasis on energy conservation and maximizing the lifetime of the network. In this work, we have carefully studied different metric compositions used for creating an objective function. The study revealed that combining metrics provides better results in terms of energy conservation when compared to single metric defined as part of RPL standard. It was also noted that considering some metric as a constraint can increase the rate of route convergence without affecting the performance of the network.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2320
Author(s):  
Zawar Shah ◽  
Andrew Levula ◽  
Khawar Khurshid ◽  
Jawad Ahmed ◽  
Imdad Ullah ◽  
...  

The Internet of Things (IoT) is aimed to provide efficient and seamless connectivity to a large number of low-power and low-cost embedded devices, consequently, the routing protocols play a fundamental role in achieving these goals. The IETF has recently standardized the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) for LLNs (i.e., Low-power and Lossy Networks) and is well-accepted among the Internet community. However, RPL was proposed for static IoT devices and suffers from many issues when IoT devices are mobile. In this paper, we first present various issues that are faced by the RPL when IoT devices are mobile. We then carry out a detailed survey of various solutions that are proposed in the current literature to mitigate the issues faced by RPL. We classify various solutions into five categories i.e., ‘Trickle-timer based solutions’, ‘ETX based solutions’, ‘RSSI based solutions’, ‘Position-based solutions’, and ‘Miscellaneous solutions’. For each category of these solutions, we illustrate their working principles, issues addressed and make a thorough assessment of their strengths and weaknesses. In addition, we found several flaws in the performance analysis done by the authors of each of the solutions, e.g., nodes mobility, time intervals, etc., and suggest further investigations for the performance evaluations of these solutions in order to assess their applicability in real-world environments. Moreover, we provide future research directions for RPL supporting various real-time applications, mobility support, energy-aware, and privacy-aware routing.


2017 ◽  
Author(s):  
JOSEPH YIU

The increasing need for security in microcontrollers Security has long been a significant challenge in microcontroller applications(MCUs). Traditionally, many microcontroller systems did not have strong security measures against remote attacks as most of them are not connected to the Internet, and many microcontrollers are deemed to be cheap and simple. With the growth of IoT (Internet of Things), security in low cost microcontrollers moved toward the spotlight and the security requirements of these IoT devices are now just as critical as high-end systems due to:


Sign in / Sign up

Export Citation Format

Share Document