scholarly journals 2A1-M16 Self-localization system using Kalman filter for robot running outdoor(Localization and Mapping)

2011 ◽  
Vol 2011 (0) ◽  
pp. _2A1-M16_1-_2A1-M16_4
Author(s):  
Kouta KODAMA ◽  
Itsuki KONDOU ◽  
Hiroyuki OGATA ◽  
Daigo MURAMATSU
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nick Le Large ◽  
Frank Bieder ◽  
Martin Lauer

Abstract For the application of an automated, driverless race car, we aim to assure high map and localization quality for successful driving on previously unknown, narrow race tracks. To achieve this goal, it is essential to choose an algorithm that fulfills the requirements in terms of accuracy, computational resources and run time. We propose both a filter-based and a smoothing-based Simultaneous Localization and Mapping (SLAM) algorithm and evaluate them using real-world data collected by a Formula Student Driverless race car. The accuracy is measured by comparing the SLAM-generated map to a ground truth map which was acquired using high-precision Differential GPS (DGPS) measurements. The results of the evaluation show that both algorithms meet required time constraints thanks to a parallelized architecture, with GraphSLAM draining the computational resources much faster than Extended Kalman Filter (EKF) SLAM. However, the analysis of the maps generated by the algorithms shows that GraphSLAM outperforms EKF SLAM in terms of accuracy.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4946 ◽  
Author(s):  
David Alejo ◽  
Fernando Caballero ◽  
Luis Merino

Sewers represent a very important infrastructure of cities whose state should be monitored periodically. However, the length of such infrastructure prevents sensor networks from being applicable. In this paper, we present a mobile platform (SIAR) designed to inspect the sewer network. It is capable of sensing gas concentrations and detecting failures in the network such as cracks and holes in the floor and walls or zones were the water is not flowing. These alarms should be precisely geo-localized to allow the operators performing the required correcting measures. To this end, this paper presents a robust localization system for global pose estimation on sewers. It makes use of prior information of the sewer network, including its topology, the different cross sections traversed and the position of some elements such as manholes. The system is based on a Monte Carlo Localization system that fuses wheel and RGB-D odometry for the prediction stage. The update step takes into account the sewer network topology for discarding wrong hypotheses. Additionally, the localization is further refined with novel updating steps proposed in this paper which are activated whenever a discrete element in the sewer network is detected or the relative orientation of the robot over the sewer gallery could be estimated. Each part of the system has been validated with real data obtained from the sewers of Barcelona. The whole system is able to obtain median localization errors in the order of one meter in all cases. Finally, the paper also includes comparisons with state-of-the-art Simultaneous Localization and Mapping (SLAM) systems that demonstrate the convenience of the approach.


2013 ◽  
Vol 373-375 ◽  
pp. 238-241
Author(s):  
Yao Chang Chen ◽  
Ta Ming Shih ◽  
Chung Ho Wang

This work addresses a new probabilistic observation model for a stereo simultaneous localization and mapping (SLAM) system within the standard Extended-Kalman filter (EKF) framework. The observation modal was derived by using the inverse depth parameterization as the landmark modal, and contributes to both bearing and range information into the EKF estimation. In this way the inherently non-linear problem cause by the projection equations is resolved and real depth uncertainty distribution of landmarks features can be accurately estimated. The system was demonstrated with real-world outdoor data. Analysis results show landmark feature depth estimation is more stable and the uncertainty noise converges faster than the traditional approach.


Author(s):  
H Ahmad ◽  
N.A Othman ◽  
M M Saari ◽  
M S Ramli ◽  
M M Mazlan ◽  
...  

<span>This paper analyze the performance of partial observability in simultaneous localization and mapping(SLAM) problem. The study focuses mainly on the effect of having a decorrelation technique known as Covariance Inflation to the estimation. The matrix inversion will be the main element to be investigated through two conditions with respect to some defined environment namely as unstable partially observable SLAM and partially observable SLAM via matrix norm analysis. For assessment purposes, the Extended Kalman Filter estimation is referred as the estimator to understand how the conditions can influence the results. The simulation results depicted that, the matrix norm is able to determine the efficiency of estimation and is proportional to the uncertainties of the system.</span>


Sign in / Sign up

Export Citation Format

Share Document