scholarly journals A novel regulatory myosin light chain gene distinguishes pre-B cell subsets and is IL-7 inducible.

1992 ◽  
Vol 11 (7) ◽  
pp. 2759-2767 ◽  
Author(s):  
E.M. Oltz ◽  
G.D. Yancopoulos ◽  
M.A. Morrow ◽  
A. Rolink ◽  
G. Lee ◽  
...  
Author(s):  
Pieter A. Doevendans ◽  
Ronald Bronsaer ◽  
Pilar Ruiz-Lozano ◽  
Jan Melle van Dantzig ◽  
Marc van Bilsen

2012 ◽  
Vol 39 (6) ◽  
pp. 1130-1138 ◽  
Author(s):  
ARUMUGAM PALANICHAMY ◽  
KHALID MUHAMMAD ◽  
PETRA ROLL ◽  
STEFAN KLEINERT ◽  
THOMAS DÖRNER ◽  
...  

Objective.Transient B cell depletion by rituximab (RTX) has become a specific treatment of rheumatoid arthritis (RA). Although phenotypic repopulation kinetics of B cell subsets are well documented, precise molecular analyses of the reconstituting immunoglobulin (Ig) genes encoding the B cell receptor in RA are sparse.Methods.A total of 708 individual CD19+CD27+ (memory) and CD19+CD27– (naive) B cells from 2 patients with RA were analyzed at baseline and 7 months after RTX at B cell repopulation. Ig light chain variable kappa (Vκ) and lambda (Vλ) light chain gene rearrangements were amplified, sequenced, and analyzed with a focus on receptor revision.Results.The naive as well as the memory repertoire repopulated polyclonally with diverse use of variable light chain gene families and minigenes. During the reconstitution phase, B cells used significantly fewer Jκ distal Vκ genes (p = 0.0006), with a higher frequency of somatic hypermutation of rearrangements employing Jκ5 compared to baseline in memory B cells. The use of Vλ rearrangements in regenerating B cells was also biased toward use of Vλ genes of the proximal cassette. In general, reemerging CD27+ Ig light chain genes were substantially more highly mutated than before RTX therapy (p < 0.0001, baseline vs during reconstitution).Conclusion.Our data indicate that RTX therapy leads to generation of distinct Vκ/Jκ and Vλ/Jλ gene repertoires consistent with replenishment of antigen-experienced B cells by germinal centers. At baseline, the imprints of receptor revision appeared to be more striking, which indicates that receptor revision is active in patients with RA and can be reduced by RTX.


1985 ◽  
Vol 5 (11) ◽  
pp. 3168-3182
Author(s):  
E E Strehler ◽  
M Periasamy ◽  
M A Strehler-Page ◽  
B Nadal-Ginard

DNA fragments located 10 kilobases apart in the genome and containing, respectively, the first myosin light chain 1 (MLC1f) and the first myosin light chain 3 (MLC3f) specific exon of the rat myosin light chain 1 and 3 gene, together with several hundred base pairs of upstream flanking sequences, have been shown in runoff in vitro transcription assays to direct initiation of transcription at the cap sites of MLC1f and MLC3f mRNAs used in vivo. These results establish the presence of two separate, functional promoters within that gene. A comparison of the nucleotide sequence of the rat MLC1f/3f gene with the corresponding sequences from mouse and chicken shows that: the MLC1f promoter regions have been highly conserved up to position -150 from the cap site while the MLC3f promoter regions display a very poor degree of homology and even the absence or poor conservation of typical eucaryotic promoter elements such as TATA and CAT boxes; the exon/intron structure of this gene has been completely conserved in the three species; and corresponding exons, except for the regions encoding most of the 5' and 3' untranslated sequences, show greater than 75% homology while corresponding introns are similar in size but considerably divergent in sequence. The above findings indicate that the overall structure of the MLC1f/3f genes has been maintained between avian and mammalian species and that these genes contain two functional and widely spaced promoters. The fact that the structures of the alkali light chain gene from Drosophila melanogaster and of other related genes of the troponin C supergene family resemble a MLC3f gene without an upstream promoter and first exon strongly suggests that the present-day MLC1f/3f genes of higher vertebrates arose from a primordial alkali light chain gene through the addition of a far-upstream MLC1f-specific promoter and first exon. The two promoters have evolved at different rates, with the MLC1f promoter being more conserved than the MLC3f promoter. This discrepant evolutionary rate might reflect different mechanisms of promoter activation for the transcription of MLC1f and MLC3f RNA.


1989 ◽  
Vol 9 (6) ◽  
pp. 2513-2525
Author(s):  
T Braun ◽  
E Tannich ◽  
G Buschhausen-Denker ◽  
H H Arnold

A segment of the 5'-flanking region of the chicken cardiac myosin light-chain gene extending from nucleotide -64 to the RNA start site is sufficient to allow muscle-specific transcription. In this paper, we characterize, by mutational analysis, sequence elements which are essential for the promoter activity. Furthermore, we present evidence for a negative-acting element which is possibly involved in conferring the muscle specificity. Nuclear proteins specifically bind to the DNA elements, as demonstrated by gel mobility shift assays and DNase I protection footprinting. The significance of the DNA-protein interactions for the function of the promoter in vivo is demonstrated by competition experiments in which protein-binding oligonucleotides were microinjected into nuclei of myotubes, where they successfully competed for the protein factors which are required to trans activate the MLC2-A promoter. The ability to bind nuclear proteins involves two closely spaced AT-rich sequence elements, one of which constitutes the TATA box. The binding properties correlate well with the capacity to activate transcription in vivo, since mutations in this region of the promoter concomitantly lead to loss of binding and transcriptional activity.


1990 ◽  
Vol 10 (6) ◽  
pp. 3224-3231
Author(s):  
S Kim ◽  
E H Humphries ◽  
L Tjoelker ◽  
L Carlson ◽  
C B Thompson

The chicken immunoglobulin light-chain gene (IgL) encodes only a single variable gene segment capable of recombination. To generate an immune repertoire, chickens diversify this unique rearranged VL gene segment during B-cell development in the bursa of Fabricius. Sequence analysis of IgL cDNAs suggests that both gene conversion events derived from VL segment pseudogene templates (psi VL) and non-template-derived single-base-pair substitutions contribute to this diversity. To facilitate the study of postrecombinational mechanisms of immunoglobulin gene diversification, avian B-cell lines were examined for the ability to diversify their rearranged IgL gene during in vitro passage. One line that retains this ability, the avian leukosis virus-induced bursal lymphoma cell line DT40, has been identified. After passage for 1 year in culture, 39 of 51 randomly sequenced rearranged V-J segments from a DT40 population defined novel subclones of the parental tumor. All cloned V-J segments displayed the same V-J joint, confirming that the observed diversity arose after V-J rearrangement. Most sequence variations that we observed (203 of 220 base pairs) appeared to result from psi VL-derived gene conversion events; 16 of the 17 novel single nucleotide substitutions were transitions. Based on these data, it appears that immunoglobulin diversification during in vitro passage of DT40 cells is representative of the diversification that occurs during normal B-cell development in the bursa of Fabricius.


1993 ◽  
Vol 13 (2) ◽  
pp. 902-910 ◽  
Author(s):  
A M Rushforth ◽  
B Saari ◽  
P Anderson

We used the polymerase chain reaction to detect insertions of the transposon Tc1 into mlc-2, one of two Caenorhabditis elegans regulatory myosin light chain genes. Our goals were to develop a general method to identify mutations in any sequenced gene and to establish the phenotype of mlc-2 loss-of-function mutants. The sensitivity of the polymerase chain reaction allowed us to identify nematode populations containing rare Tc1 insertions into mcl-2. mlc-2::Tc1 mutants were subsequently isolated from these populations by a sib selection procedure. We isolated three mutants with Tc1 insertions within the mlc-2 third exon and a fourth strain with Tc1 inserted in nearby noncoding DNA. To demonstrate the generality of our procedure, we isolated two additional mutants with Tc1 insertions within hlh-1, the C. elegans MyoD homolog. All of these mutants are essentially wild type when homozygous. Despite the fact that certain of these mutants have Tc1 inserted within exons of the target gene, these mutations may not be true null alleles. All three of the mlc-2 mutants contain mlc-2 mRNA in which all or part of Tc1 is spliced from the pre-mRNA, leaving small in-frame insertions or deletions in the mature message. There is a remarkable plasticity in the sites used to splice Tc1 from these mlc-2 pre-mRNAs; certain splice sites used in the mutants are very different from typical eukaryotic splice sites.


1993 ◽  
Vol 25 (5) ◽  
pp. 577-585 ◽  
Author(s):  
T. Trahair ◽  
T. Yeoh ◽  
T. Cartmill ◽  
A. Keogh ◽  
P. Spratt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document