scholarly journals Critical cytoplasmic domains of the common beta subunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation.

1992 ◽  
Vol 11 (10) ◽  
pp. 3541-3549 ◽  
Author(s):  
K. Sakamaki ◽  
I. Miyajima ◽  
T. Kitamura ◽  
A. Miyajima
1994 ◽  
Vol 14 (11) ◽  
pp. 7404-7413 ◽  
Author(s):  
S Takaki ◽  
H Kanazawa ◽  
M Shiiba ◽  
K Takatsu

Interleukin-5 (IL-5) regulates the production and function of B cells, eosinophils, and basophils. The IL-5 receptor (IL-5R) consists of two distinct membrane proteins, alpha and beta. The alpha chain (IL-5R alpha) is specific to IL-5. The beta chain is the common beta chain (beta c) of receptors for IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF). The cytoplasmic domains of both alpha and beta chains are essential for signal transduction. In this study, we generated cDNAs of IL-5R alpha having various mutations in their cytoplasmic domains and examined the function of these mutants by expressing them in IL-3-dependent FDC-P1 cells. The membrane-proximal proline-rich sequence of the cytoplasmic domain of IL-5R alpha, which is conserved among the alpha chains of IL-5R, IL-3R, and GM-CSF receptor (GM-CSFR), was found to be essential for the IL-5-induced proliferative response, expression of nuclear proto-oncogenes such as c-jun, c-fos, and c-myc, and tyrosine phosphorylation of cellular proteins including JAK2 protein-tyrosine kinase. In addition, analysis using chimeric receptors which consist of the extracellular domain of IL-5R alpha and the cytoplasmic domain of beta c suggested that dimerization of the cytoplasmic domain of beta c may be an important step in activating the IL-5R complex and transducing intracellular growth signals.


Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 1928-1935 ◽  
Author(s):  
K Okuda ◽  
B Druker ◽  
Y Kanakura ◽  
M Koenigsmann ◽  
JD Griffin

Abstract Granulocyte-macrophage colony-stimulating factor (GM-CSF) exerts its biologic activities through binding to specific high-affinity cell surface receptors. After binding, the ligand/receptor complex is rapidly internalized in most hematopoietic cells. Using a human factor- dependent cell line, MO7, and normal human neutrophils, we found that the internalization is exquisitely temperature-dependent, such that ligand/receptor internalization does not detectably occur at 4 degrees C. Activation of the GM-CSF receptor has previously been shown to stimulate a number of postreceptor signal transduction pathways, including activation of a tyrosine kinase and activation of the serine/threonine kinase, Raf-1. The GM-CSF-stimulated increase in tyrosine kinase activity occurs rapidly at both 4 degrees C and 37 degrees C, and therefore is likely to be independent of receptor internalization. At 37 degrees C, the protein tyrosine phosphorylation was transient in MO7 cells, with maximum phosphorylation observed after 5 to 15 minutes, followed by a rapid decline. At 4 degrees C, the protein tyrosine phosphorylation of the same substrates was greater than at 37 degrees C, and no decline in substrate phosphorylation was observed for at least 90 minutes. In contrast to tyrosine phosphorylation, the activation and hyper-phosphorylation of Raf-1 observed at 37 degrees C in both MO7 cells and neutrophils was markedly diminished at 4 degrees C. These results indicate that at least one postreceptor signal transduction mechanism, activation of a tyrosine kinase, does not require ligand/receptor internalization, and indicate that receptor internalization may be a consequence, rather than the initiator, of signal transduction.


Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 706-715 ◽  
Author(s):  
Y Kanakura ◽  
B Druker ◽  
SA Cannistra ◽  
Y Furukawa ◽  
Y Torimoto ◽  
...  

Human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) exert multiple effects on the proliferation, differentiation, and function of myeloid lineage cells through their interaction with specific cell-surface receptors. There is a considerable degree of overlap in the biological effects of these two growth factors, but little is known about the mechanisms of postreceptor signal transduction. We have investigated the effects of GM-CSF and IL-3 on protein tyrosine-kinase activity in a human cell line, MO7E, which proliferates in response to either factor. Tyrosine- kinase activity was detected using immunoblotting with a monoclonal antibody (MoAb) specific for phosphotyrosine. GM-CSF and IL-3 were found to induce a nearly identical pattern of protein tyrosine phosphorylation using both one- and two-dimensional gel electrophoresis. Tyrosine phosphorylation of two cytosolic proteins in particular was increased more than 10-fold, a 93-Kd protein (pp93) and a 70-Kd protein (pp70). Tyrosine phosphorylation of pp93 and pp70 was observed within 1 minute, reached a maximum at 5 to 15 minutes, and gradually decreased thereafter. Other proteins of 150, 125, 63, 55, 42, and 36 Kd were also phosphorylated on tyrosine in response to both GM- CSF and IL-3, although to a lesser degree. Tyrosine phosphorylation was dependent on the concentration of GM-CSF over the range of 0.1 to 10 ng/mL and on IL-3 over the range of 1 to 30 ng/mL. Stimulation of MO7E cells with 12–0-tetradecanoyl-phorbol-13-acetate (TPA) or cytokines such as G-CSF, M-CSF, interleukin-1 (IL-1), interleukin-4 (IL-4), interleukin-6 (IL-6), interferon gamma, tumor necrosis factor (TNF), or transforming growth factor-beta (TGF-beta) did not induce tyrosine phosphorylation of pp93 or pp70, suggesting that these two phosphoproteins are specific for GM-CSF-or IL-3-induced activation. The extent and duration of phosphorylation of all the substrates were increased by pretreatment of cells with vanadate, an inhibitor of protein-tyrosine phosphatases. Importantly, culture of MO7E cells with vanadate (up to 10 mumol/L) resulted in a dose-dependent increase in GM- CSF-or IL-3-induced proliferation of up to 1.8-fold. These results suggest that tyrosine phosphorylation may be important for GM-CSF and IL-3 receptor-mediated signal transduction and that cell proliferation may be, at least partially, regulated by a balance between CSF-induced protein-tyrosine kinase activity and protein-tyrosine phosphatase activity.


Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3350-3354 ◽  
Author(s):  
MA Raines ◽  
DW Golde ◽  
M Daeipour ◽  
AE Nel

Receptors of the hematopoietin superfamily, including the granulocyte- macrophage colony-stimulating factor (GM-CSF) receptor, lack a tyrosine kinase domain as well as other sequences indicative of a known signaling mechanism. In this report, we identify the serine/threonine kinase, microtubule-associated protein 2 (MAP2) kinase, as an intermediate in the GM-CSF signal transduction pathway. Treatment of peripheral blood neutrophils or terminally differentiated HL-60 cells with GM-CSF induced a rapid and dose-dependent increase in MAP2 kinase activity. Maximal activity occurred within 5 minutes and the kinetics of the response varied depending on the target cell (prolonged in neutrophils and transient in neutrophilic HL-60 cells). MAP2 kinase activity in these cells correlates with the induction of a 42-Kd tyrosine phosphoprotein. Furthermore, tyrosine phosphorylation is necessary for MAP2 kinase activation since its activity is inhibited by treatment with the tyrosine kinase inhibitor, erbstatin analog. These data suggest that tyrosine phosphorylation is important in GM-CSF- mediated signal transduction and that MAP2 kinase activation may be a central biochemical event involved in its signaling.


Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 706-715 ◽  
Author(s):  
Y Kanakura ◽  
B Druker ◽  
SA Cannistra ◽  
Y Furukawa ◽  
Y Torimoto ◽  
...  

Abstract Human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) exert multiple effects on the proliferation, differentiation, and function of myeloid lineage cells through their interaction with specific cell-surface receptors. There is a considerable degree of overlap in the biological effects of these two growth factors, but little is known about the mechanisms of postreceptor signal transduction. We have investigated the effects of GM-CSF and IL-3 on protein tyrosine-kinase activity in a human cell line, MO7E, which proliferates in response to either factor. Tyrosine- kinase activity was detected using immunoblotting with a monoclonal antibody (MoAb) specific for phosphotyrosine. GM-CSF and IL-3 were found to induce a nearly identical pattern of protein tyrosine phosphorylation using both one- and two-dimensional gel electrophoresis. Tyrosine phosphorylation of two cytosolic proteins in particular was increased more than 10-fold, a 93-Kd protein (pp93) and a 70-Kd protein (pp70). Tyrosine phosphorylation of pp93 and pp70 was observed within 1 minute, reached a maximum at 5 to 15 minutes, and gradually decreased thereafter. Other proteins of 150, 125, 63, 55, 42, and 36 Kd were also phosphorylated on tyrosine in response to both GM- CSF and IL-3, although to a lesser degree. Tyrosine phosphorylation was dependent on the concentration of GM-CSF over the range of 0.1 to 10 ng/mL and on IL-3 over the range of 1 to 30 ng/mL. Stimulation of MO7E cells with 12–0-tetradecanoyl-phorbol-13-acetate (TPA) or cytokines such as G-CSF, M-CSF, interleukin-1 (IL-1), interleukin-4 (IL-4), interleukin-6 (IL-6), interferon gamma, tumor necrosis factor (TNF), or transforming growth factor-beta (TGF-beta) did not induce tyrosine phosphorylation of pp93 or pp70, suggesting that these two phosphoproteins are specific for GM-CSF-or IL-3-induced activation. The extent and duration of phosphorylation of all the substrates were increased by pretreatment of cells with vanadate, an inhibitor of protein-tyrosine phosphatases. Importantly, culture of MO7E cells with vanadate (up to 10 mumol/L) resulted in a dose-dependent increase in GM- CSF-or IL-3-induced proliferation of up to 1.8-fold. These results suggest that tyrosine phosphorylation may be important for GM-CSF and IL-3 receptor-mediated signal transduction and that cell proliferation may be, at least partially, regulated by a balance between CSF-induced protein-tyrosine kinase activity and protein-tyrosine phosphatase activity.


1996 ◽  
Vol 183 (4) ◽  
pp. 1407-1414 ◽  
Author(s):  
S Yousefi ◽  
D C Hoessli ◽  
K Blaser ◽  
G B Mills ◽  
H U Simon

In allergic diseases, the cytokines interleukin (IL)5 and granulocyte/macrophage colony-stimulating factor (GM-CSF) are upregulated and have been proposed to cause blood and tissue eosinophilia by inhibition of eosinophil apoptosis. We demonstrate herein, in freshly isolated human eosinophils, that the IL-3/IL-5/GM-CSF receptor beta subunit interacts with cytoplasmic tyrosine kinases to induce phosphorylation of several cellular substrates, including the beta subunit itself. The Lyn and Syk intracellular tyrosine kinases constitutively associate at a low level with the IL-3/IL-5/GM-CSF receptor beta subunit in human eosinophils. Stimulation with GM-CSF or IL-5 results in a rapid and transient increase in the amount of Lyn and Syk associated with the IL-3/IL-5/GM-CSF receptor beta subunit. Lyn is required for optimal tyrosine phosphorylation and activation of Syk. In contrast, Syk is not required for optimal tyrosine phosphorylation and activation of Lyn. These data suggest that Lyn is proximal to Syk in a tyrosine kinase cascade that transduces IL-3, IL-5, or GM-CSF signals. Compatible with this model, both Lyn and Syk are essential for the activation of the antiapoptotic pathway(s) induced through the IL-3/IL-5/GM-CSF receptor beta subunit in human eosinophils.


Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 1928-1935
Author(s):  
K Okuda ◽  
B Druker ◽  
Y Kanakura ◽  
M Koenigsmann ◽  
JD Griffin

Granulocyte-macrophage colony-stimulating factor (GM-CSF) exerts its biologic activities through binding to specific high-affinity cell surface receptors. After binding, the ligand/receptor complex is rapidly internalized in most hematopoietic cells. Using a human factor- dependent cell line, MO7, and normal human neutrophils, we found that the internalization is exquisitely temperature-dependent, such that ligand/receptor internalization does not detectably occur at 4 degrees C. Activation of the GM-CSF receptor has previously been shown to stimulate a number of postreceptor signal transduction pathways, including activation of a tyrosine kinase and activation of the serine/threonine kinase, Raf-1. The GM-CSF-stimulated increase in tyrosine kinase activity occurs rapidly at both 4 degrees C and 37 degrees C, and therefore is likely to be independent of receptor internalization. At 37 degrees C, the protein tyrosine phosphorylation was transient in MO7 cells, with maximum phosphorylation observed after 5 to 15 minutes, followed by a rapid decline. At 4 degrees C, the protein tyrosine phosphorylation of the same substrates was greater than at 37 degrees C, and no decline in substrate phosphorylation was observed for at least 90 minutes. In contrast to tyrosine phosphorylation, the activation and hyper-phosphorylation of Raf-1 observed at 37 degrees C in both MO7 cells and neutrophils was markedly diminished at 4 degrees C. These results indicate that at least one postreceptor signal transduction mechanism, activation of a tyrosine kinase, does not require ligand/receptor internalization, and indicate that receptor internalization may be a consequence, rather than the initiator, of signal transduction.


Sign in / Sign up

Export Citation Format

Share Document