EVIDENCE FOR THE PECTIC NATURE OF THE MIDDLE LAMELLA OF POTATO TUBER CELL WALLS BASED ON CHROMATOGRAPHY OF MACERATING ENZYMES

1964 ◽  
Vol 51 (6Part1) ◽  
pp. 628-633 ◽  
Author(s):  
John H. McClendon
Author(s):  
S. E. Keckler ◽  
D. M. Dabbs ◽  
N. Yao ◽  
I. A. Aksay

Cellular organic structures such as wood can be used as scaffolds for the synthesis of complex structures of organic/ceramic nanocomposites. The wood cell is a fiber-reinforced resin composite of cellulose fibers in a lignin matrix. A single cell wall, containing several layers of different fiber orientations and lignin content, is separated from its neighboring wall by the middle lamella, a lignin-rich region. In order to achieve total mineralization, deposition on and in the cell wall must be achieved. Geological fossilization of wood occurs as permineralization (filling the void spaces with mineral) and petrifaction (mineralizing the cell wall as the organic component decays) through infiltration of wood with inorganics after growth. Conversely, living plants can incorporate inorganics into their cells and in some cases into the cell walls during growth. In a recent study, we mimicked geological fossilization by infiltrating inorganic precursors into wood cells in order to enhance the properties of wood. In the current work, we use electron microscopy to examine the structure of silica formed in the cell walls after infiltration of tetraethoxysilane (TEOS).


Holzforschung ◽  
2004 ◽  
Vol 58 (5) ◽  
pp. 483-488 ◽  
Author(s):  
Christian Hansmann ◽  
Manfred Schwanninger ◽  
Barbara Stefke ◽  
Barbara Hinterstoisser ◽  
Wolfgang Gindl

Abstract Spruce and birch earlywood was acetylated to different weight percent gains using three different acetylation procedures. The absorbance spectra of secondary cell wall and compound cell corner middle lamella were determined by means of UV microscopy. Analysis of the spectra showed that the characteristic lignin absorbance peak in the UV spectrum of wood around 280 nm shifted to shorter wavelengths in acetylated samples. A distinct relationship between achieved weight percent gains after acetylation and observed spectral shifts could be established revealing a certain potential to measure acetylation on a cellular level by means of UV microscopy.


1980 ◽  
Vol 58 (21) ◽  
pp. 2269-2273 ◽  
Author(s):  
H. B. Hanten ◽  
G. E. Ahlgren ◽  
J. B. Carlson

The anatomical development of the abscission zone in grains of Zizania aquatica L. was correlated with development of the embryo. The abscission zone is well developed when the embryo sac is mature. Soon after pollination, the first anatomical evidence of abscission appears as plasmolysis of the separation layer parenchyma cells. This is followed by separation of the layers by dissolution of the middle lamella and fragmentation of cell walls. Persistence of intact vascular tissue and presence of a surrounding cone-shaped mass of lignified cells may be involved in abscission of wild rice grains.


IAWA Journal ◽  
2012 ◽  
Vol 33 (4) ◽  
pp. 403-416 ◽  
Author(s):  
Karumanchi S. Rao ◽  
Yoon Soo Kim ◽  
Pramod Sivan

Sequential changes occurring in cell walls during expansion, secondary wall (SW) deposition and lignification have been studied in the differentiating xylem elements of Holoptelea integrifolia using transmission electron microscopy. The PATAg staining revealed that loosening of the cell wall starts at the cell corner middle lamella (CCML) and spreads to radial and tangential walls in the zone of cell expansion (EZ). Lignification started at the CCML region between vessels and associated parenchyma during the final stages of S2 layer formation. The S2 layer in the vessel appeared as two sublayers,an inner one and outer one.The contact ray cells showed SW deposition soon after axial paratracheal parenchyma had completed it, whereas noncontact ray cells underwent SW deposition and lignification following apotracheal parenchyma cells. The paratracheal and apotracheal parenchyma cells differed noticeably in terms of proportion of SW layers and lignin distribution pattern. Fibres were found to be the last xylem elements to complete SW deposition and lignification with differential polymerization of cell wall polysaccharides. It appears that the SW deposition started much earlier in the middle region of the fibres while their tips were still undergoing elongation. In homogeneous lignin distribution was noticed in the CCML region of fibres.


1992 ◽  
Vol 118 (2) ◽  
pp. 467-479 ◽  
Author(s):  
M A Lynch ◽  
L A Staehelin

Using immunocytochemical techniques and antibodies that specifically recognize xyloglucan (anti-XG), polygalacturonic acid/rhamnogalacturonan I (anti-PGA/RG-I), and methylesterified pectins (JIM 7), we have shown that these polysaccharides are differentially synthesized and localized during cell development and differentiation in the clover root tip. In cortical cells XG epitopes are present at a threefold greater density in the newly formed cross walls than in the older longitudinal walls, and PGA/RG-I epitopes are detected solely in the expanded middle lamella of cortical cell corners, even after pretreatment of sections with pectinmethylesterase to uncover masked epitopes. These results suggest that in cortical cells XG and PGA/RG-I are differentially localized not only to particular wall domains, but also to particular cell walls. In contrast to their nonoverlapping distribution in cortical cells, XG epitopes and PGA/RG-I epitopes largely colocalize in the epidermal cell walls. The results also demonstrate that the middle lamella of the longitudinal walls shared by epidermal cells and by epidermal and cortical cells constitutes a barrier to the diffusion of cell wall and mucilage molecules. Synthesis of XG and PGA/RG-I epitope-containing polysaccharides also varies during cellular differentiation in the root cap. The differentiation of gravitropic columella cells into mucilage-secreting peripheral cells is marked by a dramatic increase in the synthesis and secretion of molecules containing XG and PGA/RG-I epitopes. In contrast, JIM 7 epitopes are present at abundant levels in columella cell walls, but are not detectable in peripheral cell walls or in secreted mucilage. There were also changes in the cisternal labeling of the Golgi stacks during cellular differentiation in the root tip. Whereas PGA/RG-I epitopes are detected primarily in cis- and medial Golgi cisternae in cortical cells (Moore, P. J., K. M. M. Swords, M. A. Lynch, and L. A. Staehelin. 1991. J. Cell Biol. 112:589-602), they are localized predominantly in the trans-Golgi cisternae and the trans-Golgi network in epidermal and peripheral root cap cells. These observations suggest that during cellular differentiation the plant Golgi apparatus can be both structurally and functionally reorganized.


1996 ◽  
Vol 74 (12) ◽  
pp. 1974-1981 ◽  
Author(s):  
C. Batisse ◽  
P. J. Coulomb ◽  
C. Coulomb ◽  
M. Buret

The changes in texture of fruits during ripening are linked to cell wall degradation involving synthesis and degradation of polymers. An increase in pectin solubility leads to cell sliding and an elastic aspect of tissues. The biochemical cell wall process differs between soft and crisp fruits originating from a same cultivar but cultivated under different agroclimatic conditions. Although the proportions of cell wall material are similar, the composition and structure of the two cell walls are very different at maturity. A solubilization of the middle lamella and a restructuration of the primary cell walls arising from the cells separation is observed in crisp fruits. In contrast, the middle lamella of the soft fruits is better preserved and the primary cell walls are thin and show degradation bags delimited by residual membrane formations. In addition, the macroendocytosis process by endosome individualization is more important in soft fruits. In conclusion, the fruit texture depends on the extent of the links between cell wall polymers. Keywords: cherry, cell wall, texture, ultrastructural study.


Holzforschung ◽  
2005 ◽  
Vol 59 (1) ◽  
pp. 82-89 ◽  
Author(s):  
Jinzhen Cao ◽  
D. Pascal Kamdem

Abstract The relationship between copper absorption and density distribution in wood cell walls was investigated in this study. The density distribution on layer level was obtained from two approaches: (1) calculation by using data obtained from literature; (2) microdistribution of carbon and oxygen atoms in the wood cell. The microdistribution of carbon and oxygen in untreated southern yellow pine (Pinus spp.) sapwood, as well as copper in cell walls of copper-ethanolamine (Cu-EA) treated wood was determined by scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM-EDXA). Both approaches for density distribution led to the same result: the density was higher in the compound middle lamella and cell corners than in the secondary wall. The concentration/intensity of Cu, C and O in the cell wall follow the same trend as the density distribution; suggesting that density may play a major role in SEM-EDXA study of the distribution of metal-containing wood preservatives within the wood cell wall.


2015 ◽  
Vol 21 (6) ◽  
pp. 1562-1572 ◽  
Author(s):  
Toru Kanbayashi ◽  
Hisashi Miyafuji

AbstractChanges in the ultrastructure and chemical components, and their distribution in Japanese beech (Fagus crenata), during the ionic liquid 1-ethylpyridinium bromide ([EtPy][Br]) treatment were examined at the cellular level by light microscopy, scanning electron microscopy, and confocal Raman microscopy. Each of the tissues, including wood fibers, vessels and parenchyma cells treated with [EtPy][Br] showed specific morphological characteristics. Furthermore, lignin can be preferentially liquefied and eluted in [EtPy][Br] from the cell walls when compared to polysaccharides. However, the delignification was heterogeneous on the cell walls as lignin maintained a relatively high-concentration at the compound middle lamella, cell corners, inner surface of the secondary wall, and pits after [EtPy][Br] treatment.


1984 ◽  
Vol 62 (8) ◽  
pp. 1724-1729 ◽  
Author(s):  
R. G. Ballard ◽  
M. A. Walsh ◽  
W. E. Cole

The growth of blue-stain fungi was investigated in naturally blue-stained lodgepole pine (Pinus contorta var. latifolia Engelm.) sapwood. Events occurring at the leading edge of hyphal penetration were studied. Fungi are initially confined to the sapwood rays. Hyphae readily penetrate the primary cell walls of ray parenchyma cells and proliferate within. Hyphae also grow freely in the region of the middle lamella of the rays. Host cell walls are breeched mechanically by a penetration peg originating from an appressoriumlike structure. Eventually, hyphae enter tracheids by penetrating the primary cell walls of pinoid, half-bordered pit pairs. Within the tracheid, fungal hyphae grow in a longitudinal fashion, branching infrequently. Hyphae may pass from tracheid to tracheid via bordered pit pairs. Ensuing water stress and eventual tree death is discussed in light of histological evidence presented.


Sign in / Sign up

Export Citation Format

Share Document