bordered pit
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 8)

H-INDEX

16
(FIVE YEARS 1)

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1968
Author(s):  
Dmitry G. Chukhchin ◽  
Ksenia Vashukova ◽  
Evgeniy Novozhilov

The process of pit formation in plants still has various questions unaddressed and unknown, which opens up many interesting and new research opportunities. The aim of this work was elucidation of the mechanism for the formation of bordered pits of the spruce (Picea abies (L.) Karst.) tracheid with exosomes participation and mechanical deformation of the cell wall. Sample sections were prepared from spruce stem samples after cryomechanical destruction with liquid nitrogen. The study methods included scanning electron microscopy and enzymatic treatment. Enzymatic treatment of the elements of the bordered pit made it possible to clarify the localization of cellulose and pectin. SEM images of intermediate stages of bordered pit formation in the radial and tangential directions were obtained. An asynchronous mechanism of formation of bordered-pit pairs in tracheids is proposed. The formation of the pit pair begins from the side of the initiator cell and is associated with enzymatic hydrolysis of the secondary cell wall and subsequent mechanical deformation of the primary cell walls. Enzymatic hydrolysis of the S1 layer of the secondary cell wall is carried out by exosome-delivered endoglucanases.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 526
Author(s):  
Wen Qu ◽  
Chunmei Yang ◽  
Yan Ma ◽  
Wenji Yu ◽  
Guangyi Qin ◽  
...  

Fluid flow between adjacent tracheids is realized through bordered pits in the xylem of conifers. The pit has an extremely small size and a highly complex structure. This paper presents a mesoscopic analytical method for the relationship between the pit structure and its hydraulic characteristics through mathematical modeling using the lattice Boltzmann method (LBM) and curved boundary treatment. Mongolian Scots pine were selected as the research subject of this study, and the bordered pit structure parameters was collected by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the original geometric features were maintained for direct modeling analysis. The model revealed the relationship between various components of the bordered pit and liquid flow velocity/resistance, indicating that margo is the main factor affecting flow resistance. Further anatomical investigation separately analyzed the influence of change in a single factor, including pit diameter, pit aperture diameter, pit depth, torus diameter, and margo thickness, on the overall flow and pressure drop to confirm the importance of various factors in this relationship. Additionally, the influence of pore size and pore location distribution in the margo on the flow rate and pressure drop was further analyzed quantitatively. The results showed that the flow rate through individual pores is the result of the combined effect of pore area and radial position of the pore in the margo. Our study promotes the research and application of the mesoscopic model LBM in simulating flow conditions in the complex flow field of pits, which realizes the numerical analysis of the flow field model based on individualized real bordered pits. In comparison with the classical macroscopic model, the accuracy and effectiveness of the proposed model are proved. This research can provide a promising method for analyzing the physiological and ecological functions of conifer and realizing the efficient utilization of wood resources.


Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 772
Author(s):  
Xiang Weng ◽  
Yongdong Zhou ◽  
Zongying Fu ◽  
Xin Gao ◽  
Fan Zhou ◽  
...  

Microwave (MW) treatment is an effective method to increase refractory wood permeability, thereby reducing drying time and defects. The extent of modification depends on the damage extent of the wood microstructure. In this study, MW intensities of 43 kWh/m3 (low intensity) and 57 kWh/m3(high intensity) were adopted to treat Chinese fir lumber. Microstructural changes in wood samples were observed using scanning electron microscopy (SEM) and pore structure was characterized using mercury intrusion porosimetry (MIP). Results were as follows: After low-intensity MW treatment, parts of the bordered pit membranes in tracheids were damaged, and micro-fibrils on the margo were ruptured, while the torus basically remained intact. Micro-cracks were observed at both ends of the cross-field pit apertures, propagating to the cell walls of tracheids. The middle lamellar between ray parenchyma cells and longitudinal tracheids cracked, and the width of cracks was in the range of 1–25 μm. After high-intensity MW treatment, damage to the wood microstructure was more severe than that in the low-intensity MW treatment, with macro-cracks having a width range of 100–130 μm being generated. In addition, on the fracture surface of macro-cracks, the bordered pit membranes in tracheids fell off, cross-field pit membranes disappeared and the ray parenchyma cells were seriously damaged, exhibiting fracture of the tracheid walls. Both low-intensity and high-intensity MW treatment can increase the pore diameter corresponding to the margo capillaries (peak value increased from 674.7 nm to 831.8 nm and 1047.6 nm, respectively). The number of pores in the tracheid lumen diameter range also significantly increased. These results provide a theoretical support forMW treatment processes’ improvement and high-value utilization of Chinese fir.


IAWA Journal ◽  
2020 ◽  
Vol 41 (1) ◽  
pp. 12-29 ◽  
Author(s):  
Robin Adey-Johnson ◽  
J. Paul Mclean ◽  
Jan Van den Bulcke ◽  
Joris Van Acker ◽  
Peter J. McDonald

Abstract This study aimed to define the variability in the microstructure of Norway spruce within an annual ring by examining differences between earlywood and latewood. In particular, we were interested in obtaining new information on bordered pit occurrence and locations relative to tracheid ends, plus the lumina dimensions and longitudinal overlap of tracheids that collectively define the longitudinal hydraulic pathways. A stacked series of X-ray micro-CT scans of an annual ring of Norway spruce were made and stitched together longitudinally to form a three-dimensional volume. The imaging resolution was carefully chosen to capture both longitudinal and transverse anatomical details. Measurements of tracheid length, overlap, radial lumen diameter, and bordered pit location were made semi-automatically using image analysis. The distribution of radial lumen diameter was used to define earlywood and latewood. Then bordered pit linear density and spatial distribution, tracheid length and overlap were analysed, presented and contrasted for earlywood and latewood. Further differences between earlywood and latewood were found only in bordered pit linear density. Clear trends in radial lumen diameter and pit linear density were observed with radial position within the growth ring. These results provide new information on the variability of the Norway spruce microstructure within an annual ring.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 231 ◽  
Author(s):  
Shan Li ◽  
Jie Wang ◽  
Yafang Yin ◽  
Xin Li ◽  
Liping Deng ◽  
...  

Pit membranes in between neighboring conduits of xylem play a crucial role in plant water transport. In this review, the morphological characteristics, chemical composition and mechanical properties of bordered pit membranes were summarized and linked with their functional roles in xylem hydraulics. The trade-off between xylem hydraulic efficiency and safety was closely related with morphology and properties of pit membranes, and xylem embolism resistance was also determined by the pit membrane morphology and properties. Besides, to further investigate the effects of bordered pit membranes morphology and properties on plant xylem hydraulic functions, here we modelled three-dimensional structure of bordered pit membranes by applying a deposition technique. Based on reconstructed 3D pit membrane structures, a virtual fibril network was generated to model the microflow pattern across inter-vessel pit membranes. Moreover, the mechanical behavior of intervessel pit membranes was estimated from a single microfibril’s mechanical property. Pit membranes morphology varied among different angiosperm and gymnosperm species. Our modelling work suggested that larger pores of pit membranes do not necessarily contribute to major flow rate across pit membranes; instead, the obstructed degree of flow pathway across the pit membranes plays a more important role. Our work provides useful information for studying the mechanism of microfluid flow transport across pit membranes and also sheds light on investigating the response of pit membranes both at normal and stressed conditions, thus improving our understanding on functional roles of pit membranes in xylem hydraulic function. Further work could be done to study the morphological and mechanical response of bordered pit membranes under different dehydrated conditions, as well as the related microflow behavior, based on our constructed model.


IAWA Journal ◽  
2019 ◽  
Vol 40 (4) ◽  
pp. 871-883 ◽  
Author(s):  
Shuqin Zhang ◽  
Rong Liu ◽  
Caiping Lian ◽  
Junji Luo ◽  
Feng Yang ◽  
...  

ABSTRACT The flow of xylem sap in bamboo is closely associated with metaxylem vessels and the pits in their cell walls. These pits are essential components of the water-transport system and are key intercellular pathways for transverse permeation of treatment agents related to utilization. Observations of metaxylem vessels and pits in moso bamboo culm internodes were carried out using environmental scanning electron microscopy (ESEM) to examine mature bamboo fractures and resin casts. The results showed that bordered pits were distributed in relation to adjacent cell types with most pits between vessels and parenchyma cells and few pits between vessels and fibers of the bundle sheath. The pit arrangement was mainly opposite to alternate with apertures ranging from oval, flattened elliptical, or slit-like to coalescent. The vertical dimensions of inner apertures and outer apertures of the pits were about 0.9–2.7 μm and 1.1–3.8 μm, respectively. According to the relative position, and size difference between the inner apertures and their borders, the bordered pit shapes were categorized into three types, namely PI, PII and PIII (Fig. 3C). Half-bordered pit pairs were observed between vessels and direct contact parenchyma cells. Most vessel elements possessed simple perforation plates.


Trees ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Martyna M. Kotowska ◽  
Rebecca Thom ◽  
Ya Zhang ◽  
H. Jochen Schenk ◽  
Steven Jansen

IAWA Journal ◽  
2017 ◽  
Vol 38 (2) ◽  
pp. 220-244 ◽  
Author(s):  
Roberto R. Pujana ◽  
Daniela P. Ruiz

A new species of Podocarpoxylon Gothan is described based on samples collected from sediments of the Río Turbio Formation. The fossil-bearing strata are lower Eocene (47–46 Mya) according to recent geochronological ages. The new species has indistinct growth ring boundaries, abundant and frequently tangentially zonate axial parenchyma, uniseriate pitting on radial walls, one half-bordered pit (= oculipore) with reduced borders and vertical aperture inclination per cross-field and medium height uniseriate rays. The new material is compared with all fossil-species of Podocarpoxylon and an inventory of all Podocarpoxylon species previously described is provided. Cross-field characters of the new species indicate affinity to the Podocarpaceae. The presence of Podocarpaceae wood augments other evidence of this family from the same stratigraphic unit.


Sign in / Sign up

Export Citation Format

Share Document