Specificities Between Blood Cell Adhesion in Human Diseases and Antiadhesive Action in Vitro of Methoxylated Flavones

1973 ◽  
Vol 13 (10) ◽  
pp. 401-407
Author(s):  
R. C. ROBBINS
Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 13-14
Author(s):  
Ran An ◽  
Yuncheng Man ◽  
Erdem Kucukal ◽  
Kevin Cheng ◽  
William Wulftange ◽  
...  

Introduction: Sickle cell disease (SCD) is an inherited hemoglobinopathy, in which the mutation of a single amino acid in the adult beta chain results in sickle hemoglobin (HbS). Upon deoxygenation, HbS polymerizes in red blood cells (RBCs) and provokes a complex pathophysiology of acute and chronic organ damage. Sickle RBCs have reduced deformability, increased adhesion to the endothelium, and are prone to hemolysis, which further contributes to endothelial dysfunction. Chronic inflammatory processes as well as hemostatic alterations and thrombotic events are common in SCD. Cumulatively, thromboinflammation plays a significant pathophysiologic role in SCD, contributing to venous thromboembolism, vaso-occlusion, ischemia-reperfusion, and chronic organ damage, which cumulatively lead to increased morbidity, health care utilization, and a reduced life expectancy. Several pathophysiological processes in SCD result in the activation of RBCs and in the release of sub-micron particles called extracellular vesicles (EVs). EVs are composed of a lipid bilayer, transmembrane proteins, and enclosing intracellular remnants, including cytosolic proteins, RNA, and micro-RNA (miRNA). EVs can serve as vehicles for cellular communication, in near and remote proximity, and can reflect the parent cell's activation state. In SCD, RBC-derived EVs (REVs) comprise the most prevalent (>50%) subtype. REVs express surface phosphatidylserine (PS), contain heme and miRNAs, and are capable of promoting blood coagulation and a pro-inflammatory/pro-adhesive endothelial phenotype. Despite the significant potential role of REVs as candidate biomarkers, REV associated proinflammatory effects are often evaluated using animal models, or by assessing white blood cell adhesion, and thus do not reflect the well-known clinical heterogeneity and the abnormal RBC adhesion amongst SCD patients. Methods: We have developed an in vitro microfluidic assay, the SCD-EV-BioChip, with which to assess RBC adhesion as a biomarker for REV-mediated lung microvascular endothelial dysfunction. The SCD-EV-BioChip contains microfluidic channels lined with human pulmonary microvascular endothelial cells (HPMECs) that are maintained under precise shear stress and oxygen tension at physiologically and clinically relevant levels. HPMECs were incubated with patient-specific or pooled REVs generated in vitro via exposure of RBCs to calcium ionophore (Fig. 1A&B). We assessed RBC adhesion in 4 healthy subjects (HbAA), 10 homozygous SCD patients (HbSS), and 3 patients with HbSC disease for REV proinflammatory effects using HPMCs exposed to patient specific derived REVs. Results and Discussion: In non-patient-specific testing, adhesion assays were performed on samples from 12 individuals with HbSS, using HPMECs that had been exposed to pooled REVs derived from multiple patients, thus reflecting only patient-specific RBC intrinsic adhesion, rather than patient-specific contribution of RBC derived REVs. Patient specific REV activation of HPMCs (Fig. 1C&D) showed that RBC adhesion was greater in HbSS-containing samples, compared with HbSC or HbAA (Fig. 1B&C). In subjects with HbSS, RBC adhesion to HPMC, activated by patient-specific derived REV, was higher in those without, vs. those with a recent transfusion (non-TX vs. TX, Fig. 1D). However, non-TX samples showed intrinsically less adhesion to HPMECs activated by pooled REVs (Fig. 1E), compared with TX samples. Results suggest a paradoxical association between transfusion history and RBC adhesion in patient specific tests vs. non-patient-specific tests. This association suggests that the minority of RBCs containing HbSS in TX subjects generate fewer or less active patient specific REVs, but that these residual HbSS-RBCs are highly adherent when the endothelium is perturbed by pooled non-patient specific REVs. These data highlight that patient-specific contributions from both REVs and RBCs must be accounted for when describing abnormal RBC adhesion in individuals with SCD. Disclosures An: Hemex Health, Inc.: Patents & Royalties. Little:NHLBI: Research Funding; GBT: Membership on an entity's Board of Directors or advisory committees; GBT: Research Funding; Bluebird Bio: Research Funding; BioChip Labs: Patents & Royalties: SCD Biochip (patent, no royalties); Hemex Health, Inc.: Patents & Royalties: Microfluidic electropheresis (patent, no royalties). Gurkan:Dx Now Inc.: Patents & Royalties; Xatek Inc.: Patents & Royalties; BioChip Labs: Patents & Royalties; Hemex Health, Inc.: Consultancy, Current Employment, Patents & Royalties, Research Funding.


1971 ◽  
Vol 10 (04) ◽  
pp. 299-304
Author(s):  
József Takó ◽  
János Fischer ◽  
Jusztina Juhász ◽  
Ilona Sztraka ◽  
István Kapus ◽  
...  

SummaryThe results of thyroid function tests have been compared with data on the thyroxine-binding capacity of plasma proteins in hyper-, hypo- and euthyroid cases, the latter including women taking oral contraceptives (Infecundin). It was found that there exists a significant correlation of exponential nature between the in vitro red blood cell 125I-triiodothyronine uptake (RCU) and the free thyroxine-binding capacity of the thyroxine-inding globulin (TBG).


2011 ◽  
Vol 1 (2) ◽  
pp. 173-181
Author(s):  
Laurence Guyonneau-Harmand ◽  
Luc Douay

Author(s):  
Mattias Lepsenyi ◽  
Nader Algethami ◽  
Amr A. Al-Haidari ◽  
Anwar Algaber ◽  
Ingvar Syk ◽  
...  

AbstractPeritoneal metastasis is an insidious aspect of colorectal cancer. The aim of the present study was to define mechanisms regulating colon cancer cell adhesion and spread to peritoneal wounds after abdominal surgery. Mice was laparotomized and injected intraperitoneally with CT-26 colon carcinoma cells and metastatic noduli in the peritoneal cavity was quantified after treatment with a CXCR2 antagonist or integrin-αV-antibody. CT-26 cells expressed cell surface chemokine receptors CXCR2, CXCR3, CXCR4 and CXCR5. Stimulation with the CXCR2 ligand, CXCL2, dose-dependently increased proliferation and migration of CT-26 cells in vitro. The CXCR2 antagonist, SB225002, dose-dependently decreased CXCL2-induced proliferation and migration of colon cancer cells in vitro. Intraperitoneal administration of CT-26 colon cancer cells resulted in wide-spread growth of metastatic nodules at the peritoneal surface of laparotomized animals. Laparotomy increased gene expression of CXCL2 at the incisional line. Pretreatment with CXCR2 antagonist reduced metastatic nodules by 70%. Moreover, stimulation with CXCL2 increased CT-26 cell adhesion to extracellular matrix (ECM) proteins in a CXCR2-dependent manner. CT-26 cells expressed the αV, β1 and β3 integrin subunits and immunoneutralization of αV abolished CXCL2-triggered adhesion of CT-26 to vitronectin, fibronectin and fibrinogen. Finally, inhibition of the αV integrin significantly attenuated the number of carcinomatosis nodules by 69% in laparotomized mice. These results were validated by use of the human colon cancer cell line HT-29 in vitro. Our data show that colon cancer cell adhesion and growth on peritoneal wound sites is mediated by a CXCL2-CXCR2 signaling axis and αV integrin-dependent adhesion to ECM proteins.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 364
Author(s):  
Marcelo Ayllon ◽  
Gamid Abatchev ◽  
Andrew Bogard ◽  
Rosey Whiting ◽  
Sarah E. Hobdey ◽  
...  

The need for alternatives to antibiotics in the fight against infectious diseases has inspired scientists to focus on antivirulence factors instead of the microorganisms themselves. In this respect, prior work indicates that tiny, enclosed bilayer lipid membranes (liposomes) have the potential to compete with cellular targets for toxin binding, hence preventing their biological attack and aiding with their clearance. The effectiveness of liposomes as decoy targets depends on their availability in the host and how rapidly they are cleared from the circulation. Although liposome PEGylation may improve their circulation time, little is known about how such a modification influences their interactions with antivirulence factors. To fill this gap in knowledge, we investigated regular and long-circulating liposomes for their ability to prevent in vitro red blood cell hemolysis induced by two potent lytic toxins, lysenin and streptolysin O. Our explorations indicate that both regular and long-circulating liposomes are capable of similarly preventing lysis induced by streptolysin O. In contrast, PEGylation reduced the effectiveness against lysenin-induced hemolysis and altered binding dynamics. These results suggest that toxin removal by long-circulating liposomes is feasible, yet dependent on the particular virulence factor under scrutiny.


Sign in / Sign up

Export Citation Format

Share Document