Instantaneous Real-Time Cycle-Slip Correction for Quality Control of GPS Carrier-Phase Measurements

Navigation ◽  
2002 ◽  
Vol 49 (4) ◽  
pp. 205-222 ◽  
Author(s):  
DONGHYUN KIM ◽  
RICHARD B. LANGLEY
2021 ◽  
Vol 13 (11) ◽  
pp. 2078
Author(s):  
Ning Liu ◽  
Qin Zhang ◽  
Shuangcheng Zhang ◽  
Xiaoli Wu

Real-time cycle slip detection and repair is one of the key issues in global positioning system (GPS) high precision data processing and application. In particular, when GPS stations are in special environments, such as strong ionospheric disturbance, sea, and high-voltage transmission line interference, cycle slip detection and repair in low elevation GPS observation data are more complicated than those in normal environments. For low elevation GPS undifferenced carrier phase data in different environments, a combined cycle slip detection algorithm is proposed. This method uses the first-order Gauss–Markov stochastic process to model the pseudorange multipath in the wide-lane phase minus narrow-lane pseudorange observation equation, and establishes the state equation of the wide-lane ambiguity with the pseudorange multipath as a parameter, and it uses the Kalman filter for real-time estimation and detects cycle slips based on statistical hypothesis testing with a predicted residual sequence. Meanwhile, considering there are certain correlations among low elevation, observation epoch interval, and ionospheric delay error, a second-order difference geometry-free combination cycle slip test is constructed that takes into account the elevation. By combining the two methods, real-time cycle slip detection for GPS low elevation satellite undifferenced data is achieved. A cycle slip repair method based on spatial search and objective function minimization criterion is further proposed to determine the correct solution of the cycle slips after they are detected. The whole algorithm is experimentally verified using the static and kinematic measured data of low elevation satellites under four different environments: normal condition, high-voltage transmission lines, dynamic condition in the sea, and ionospheric disturbances. The experimental results show that the algorithm can detect and repair cycle slips accurately for low elevation GPS undifferenced data, the difference between the float solution and the true value for the cycle slip does not exceed 0.5 cycle, and the differences obey the normal distribution overall. At the same time, the wide-lane ambiguity and second-order difference GF combination sequence calculated by the algorithm is smoother, which give further evidence that the algorithm for cycle slip detection and repair is feasible and effective, and has the advantage of being immune to the special observation environments.


2019 ◽  
Vol 13 ◽  
pp. 174830181983304
Author(s):  
Hangshuai Ma ◽  
Rong Wang ◽  
Zhi Xiong ◽  
Jianye Liu ◽  
Chuanyi Li

The application of Beidou Satellite Navigation System (BDS) is developing rapidly. To satisfy the increasing demand for positioning performance, single-frequency precise point positioning (SFPPP) has been a focus in recent years. By introducing the SFPPP technique into the INS/BDS integrated system, higher navigation accuracy can be obtained. Cycle slip, which is caused by signal blockage during the measurement of the carrier phase, is a challenge for SFPPP application. In the INS/SFPPP-BDS integrated system, cycle slip can cause serious bias in BDS carrier phase measurements. In this paper, a new INS/SFBDS-PPP tightly coupled navigation system and a robust adaptive filtering method are proposed. Using a low-cost single-frequency receiver integrated with INS, an observation model was built based on the pseudo range and carrier phase by PPP preprocessing. The cycle slip was introduced into the state vector to improve the estimation precision. The test statistics, comprising the innovation and its covariance, were used to estimate the time at which cycle slip occurred and its amplitude to compensate for its effect on the observation. Finally, the proposed system model and algorithm are validated by simulation.


Survey Review ◽  
2016 ◽  
Vol 48 (350) ◽  
pp. 367-375 ◽  
Author(s):  
Y.-F. Yao ◽  
J.-X. Gao ◽  
J. Wang ◽  
H. Hu ◽  
Z.-K. Li

2003 ◽  
Vol 56 (3) ◽  
pp. 475-486 ◽  
Author(s):  
Hung-Kyu Lee ◽  
Jinling Wang ◽  
Chris Rizos

To ensure high accuracy results from an integrated GPS/INS system, the carrier phase observables have to be used to update the filter's states. As a prerequisite the integer ambiguities must be resolved before using carrier phase measurements. However, a cycle slip that remains undetected (and uncorrected) will significantly degrade the filter's performance. In this paper, an algorithm that can effectively detect and identify any type of cycle slip is presented. The algorithm uses additional information provided by the INS, and applies a statistical technique known as the cumulative-sum (CUSUM) test. In this approach, cycle slip decision values can be computed from the INS-predicted position (due to the fact that its short-term accuracy is very high), and the CUSUM test used to detect cycle slips (as it is very sensitive to abrupt changes of mean values). Test results are presented to demonstrate the effectiveness of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document