In vitro evaluation of biocompatibility of beta-tricalcium phosphate-reinforced high-density polyethylene; an orthopedic composite

2005 ◽  
Vol 75A (1) ◽  
pp. 14-22 ◽  
Author(s):  
S. SH. Homaeigohar ◽  
M. A. Shokrgozar ◽  
A. Yari Sadi ◽  
A. Khavandi ◽  
J. Javadpour ◽  
...  
2012 ◽  
Vol 20 (7) ◽  
pp. 754-761
Author(s):  
Dae Hyeok Yang ◽  
Min Soo Bae ◽  
Lingjuan Qiao ◽  
Dong Nyoung Heo ◽  
Jung Bok Lee ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Xiangfen Li ◽  
Liu Wang ◽  
Qin Su ◽  
Ling Ye ◽  
Xuedong Zhou ◽  
...  

Human dental pulp cells (HDPCs) play a vital role in dentin formation and reparative dentinogenesis, which indicated their potential application in regenerative medicine. However, HDPCs, which can only be obtained from scarce human pulp tissues, also have a limited lifespan in vitro, and stem cells usually lose their original characteristics over a large number of passages. To overcome these challenges, we successfully immortalized human dental pulp cells using the piggyBac system which was employed to efficiently overexpress the SV40 T-Ag, and we then comprehensively described the cell biological behavior. The immortalized human dental pulp cells (iHDPCs) acquired long-term proliferative activity and expressed most HDPC markers. The iHDPCs maintained multiple differentiation potential and could be induced to differentiate into chondrogenic, osteogenic, and adipogenic cells in vitro. We also proved that the iHDPCs gained a stronger ability to migrate than the primary cells, while apoptosis was inhibited. Furthermore, highly proliferative iHDPCs displayed no oncogenicity when subcutaneously implanted into athymic nude mice. Finally, iHDPCs exhibited odontogenic differentiation ability and secreted dentin sialophosphoprotein (DSPP) when combined with a beta-tricalcium phosphate scaffold and bone morphogenetic protein-2 (BMP2) in vivo. Conclusively, the established iHDPCs are a valuable resource for mechanistic study of dental pulp cell differentiation and dental pulp injury repair, as well as for applications in tooth regeneration.


2020 ◽  
Vol 112 ◽  
pp. 110849 ◽  
Author(s):  
Vivian Inês dos Santos ◽  
Claudia Merlini ◽  
Águedo Aragones ◽  
Karina Cesca ◽  
Márcio Celso Fredel

2008 ◽  
Vol 396-398 ◽  
pp. 81-84 ◽  
Author(s):  
Kang Sik Lee ◽  
Jae Suk Chang ◽  
Jung Hwa Kim ◽  
Chang Kuk You ◽  
Hoon Kwon ◽  
...  

Beta-tricalcium phosphate(β-TCP) coating layer is known to be resorbed much faster than hydroxyapatite(HA), however, there has been no report to explain the exact reason of these results. Eighty titanium discs, coated with HA(n=40) or β-TCP(n=40) by dip and spin coating method, were divided into 2 subgroups respectively; Dissolution(D, n=20) and osteoclast culture(C, n=20). The coated discs in D group were immersed in the cell culture media for 5 days, whereas, in C group, osteoclasts were seeded on the specimens and cultured for 5 days. After simple dissolution test, β-TCP coating layer showed much more cracks and denudation as compared to HA. In osteoclast culture group, mean area fraction of resorption pits in HA-C group was 11.62%, which was significantly higher than that of 0.73% in β-TCP-C group(p=0.001). In conclusion, the resorption mechanisms of HA and β-TCP coating layers were different each other in vitro study. The coated β-TCP was degraded mainly by dissolution and separation from implant, on the other hand, the HA coating layer was resorbed by osteoclastic activity.


2006 ◽  
Vol 309-311 ◽  
pp. 1161-1164 ◽  
Author(s):  
Miho Tanuma ◽  
Yoshikazu Kameshima ◽  
Akira Nakajima ◽  
Kiyoshi Okada ◽  
Shigeo Asai ◽  
...  

We have reported that CaSiO3 ceramics show very fast bone-like apatite formation in simulated body fluid (SBF). However, CaSiO3 ceramics have disadvantages in their mechanical properties and shapability. It is therefore more effective to develop composites of CaSiO3 particles dispersed in a matrix of polymer or metal. Such composites are usually prepared by homogeneously blending the ceramic powder with the matrix component. This method is, however, ineffective for the preparation of biocompatible polymers or metals because only the surfaces containing accidentally-exposed ceramic particles play a role in generating apatite in SBF. It is therefore necessary to add a large volume of ceramic powder and also to abrade the surface to expose more of the ceramic particles. In this study, CaSiO3/high-density polyethylene (HDPE) composites were prepared by hot-pressing to introduce surface CaSiO3 particles and their biocompatibilities were evaluated under in vitro conditions using SBF. CaSiO3 powders were spread on a HDPE plate and hot-pressed at 140oC and 4.9-14.7 MPa for 2 min. The composite sample (about 10×10×1 mm3 in size) was immersed in 30ml SBF (sample/solution ratio of 2.5 g/l) at 36.5oC. After 14 days soaking, the apatite product particles covered most of the composite surface and formed apatite layers. Bone-like apatite particles were formed only on the surface regions containing exposed CaSiO3 particles but no apatite was formed on the CaSiO3 particles buried in the HDPE matrix. The results show that this surface deposition method is very effective in developing biocompatibility in the composites using very small amounts of CaSiO3 powder (about <1 %v) compared with results reported for hydroxyapatite and AW glass-ceramic powders (requiring about 40 %v). It is also found that the inhomogeneous state of the CaSiO3 particles in the surface of the present composites strongly influences their biocompatibility. It will be necessary to improve the homogeneity of CaSiO3 dispersion in the surface of the composites to achieve a more uniform surface apatite layer.


Sign in / Sign up

Export Citation Format

Share Document