A novel method to prepare water-dispersible magnetic nanoparticles and their biomedical applications: Magnetic capture probe and specific cellular uptake

2008 ◽  
Vol 87A (2) ◽  
pp. 364-372 ◽  
Author(s):  
Changjiang Yu ◽  
Jianjun Zhao ◽  
Yingzhi Guo ◽  
Cailing Lu ◽  
Xu Ma ◽  
...  
2020 ◽  
Author(s):  
Morteza Javadi ◽  
Van A. Ortega ◽  
Alyxandra Thiessen ◽  
Maryam Aghajamali ◽  
Muhammad Amirul Islam ◽  
...  

<p>The design and fabrication of Si-based multi-functional nanomaterials for biological and biomedical applications is an active area of research. The potential benefits of using Si-based nanomaterials are not only due to their size/surface-dependent optical responses but also the high biocompatibility and low-toxicity of silicon itself. Combining these characteristics with the magnetic properties of Fe<sub>3</sub>O<sub>4</sub> nanoparticles (NPs) multiplies the options available for real-world applications. In the current study, biocompatible magnetofluorescent nano-hybrids have been prepared by covalent linking of Si quantum dots to water-dispersible Fe<sub>3</sub>O<sub>4</sub> NPs <i>via</i> dicyclohexylcarbodiimide (DCC) coupling. We explore some of the properties of these magnetofluorescent nano-hybrids as well as evaluate uptake, the potential for cellular toxicity, and the induction of acute cellular oxidative stress in a mast cells-like cell line (RBL-2H3) by heat induction through short-term radio frequency modulation (10 min @ 156 kHz, 500 A). We found that the NPs were internalized readily by the cells and also penetrated the nuclear membrane. Radio frequency activated nano-hybrids also had significantly increased cell death where > 50% of the RBL-2H3 cells were found to be in an apoptotic or necrotic state, and that this was attributable to increased triggering of oxidative cell stress mechanisms. </p>


2015 ◽  
Vol 21 (42) ◽  
pp. 6038-6054 ◽  
Author(s):  
Dragoș Gudovan ◽  
Paul Balaure ◽  
Dan Mihăiescu ◽  
Adrian Fudulu ◽  
Bogdan Purcăreanu ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Frederik Laust Durhuus ◽  
Lau Halkier Wandall ◽  
Mathias Hoeg Boisen ◽  
Mathias Kure ◽  
Marco Beleggia ◽  
...  

Magnetically guided self-assembly of nanoparticles is a promising bottom-up method to fabricate novel materials and superstructures, such as, for example, magnetic nanoparticle clusters for biomedical applications. The existence of assembled...


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4300
Author(s):  
Marta Multigner ◽  
Irene Morales ◽  
Marta Muñoz ◽  
Victoria Bonache ◽  
Fernando Giacomone ◽  
...  

To modulate the properties of degradable implants from outside of the human body represents a major challenge in the field of biomaterials. Polylactic acid is one of the most used polymers in biomedical applications, but it tends to lose its mechanical properties too quickly during degradation. In the present study, a way to reinforce poly-L lactic acid (PLLA) with magnetic nanoparticles (MNPs) that have the capacity to heat under radiofrequency electromagnetic fields (EMF) is proposed. As mechanical and degradation properties are related to the crystallinity of PLLA, the aim of the work was to explore the possibility of modifying the structure of the polymer through the heating of the reinforcing MNPs by EMF within the biological limit range f·H < 5·× 109 Am−1·s−1. Composites were prepared by dispersing MNPs under sonication in a solution of PLLA. The heat released by the MNPs was monitored by an infrared camera and changes in the polymer were analyzed with differential scanning calorimetry and nanoindentation techniques. The crystallinity, hardness, and elastic modulus of nanocomposites increase with EMF treatment.


2015 ◽  
Vol 3 (16) ◽  
pp. 3331-3339 ◽  
Author(s):  
Zi Gu ◽  
Huali Zuo ◽  
Li Li ◽  
Aihua Wu ◽  
Zhi Ping Xu

We introduced a new strategy of albumin pre-coating to effectively stabilise layered double hydroxide (LDH) nanoparticles for biomedical applications.


Author(s):  
Shane Harstad ◽  
Shivakumar Hunagund ◽  
Zoe Boekelheide ◽  
Zainab A. Hussein ◽  
Ahmed A. El-Gendy ◽  
...  

2007 ◽  
Vol 43 (6) ◽  
pp. 2445-2447 ◽  
Author(s):  
Po-Chieh Chiang ◽  
Dung-Shing Hung ◽  
Jeng-Wen Wang ◽  
Chih-Sung Ho ◽  
Yeong-Der Yao

Sign in / Sign up

Export Citation Format

Share Document