A three-dimensional multiporous fibrous scaffold fabricated with regenerated spider silk protein/poly(l-lactic acid) for tissue engineering

2014 ◽  
Vol 103 (2) ◽  
pp. 721-729 ◽  
Author(s):  
Qiaozhen Yu ◽  
Chengjun Sun
2009 ◽  
Vol 426 (1) ◽  
pp. 127-130 ◽  
Author(s):  
I. I. Agapov ◽  
O. L. Pustovalova ◽  
M. M. Moisenovich ◽  
V. G. Bogush ◽  
O. S. Sokolova ◽  
...  

2017 ◽  
Vol 27 (36) ◽  
pp. 1701427 ◽  
Author(s):  
Jana Petzold ◽  
Tamara B. Aigner ◽  
Filip Touska ◽  
Katharina Zimmermann ◽  
Thomas Scheibel ◽  
...  

2010 ◽  
Vol 152-153 ◽  
pp. 1734-1744 ◽  
Author(s):  
Hong Xin Wang ◽  
Zheng Xiang Xue ◽  
Mei Hong Wei ◽  
Deng Long Chen ◽  
Min Li

As a new biomaterial, recombinant spider silk protein has attracted much attention in tissue engineering. The pNSR-16/ BL21(DE3)pLysS strains fermented and produced the recombinant spider silk protein, which was then cast into scaffolds. NIH-3T3 cells were cultivated with extractions of the scaffolds in vitro. The cytotoxicity of scaffolds was analyzed with a MTT assay. The performances of cells adhesion, growth and expression on the scaffolds were observed with SEM, HE staining and immunohistochemistry. Compared with the control, the extract fluid of materials culturing the NIH-3T3 cells was not apparently different. NIH-3T3 cells could adhere and grow on the scaffolds and secret FGF-2. The pNSR-16 recombinant spider silk protein scaffolds has satisfactory cytocompatibility and the scaffolds are ideal scaffold material for tissue engineering.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Johannes P. M. Kramer ◽  
Tamara B. Aigner ◽  
Jana Petzold ◽  
Kaveh Roshanbinfar ◽  
Thomas Scheibel ◽  
...  

2020 ◽  
Vol 8 (9) ◽  
pp. 2514-2525
Author(s):  
Carolina Åstrand ◽  
Veronique Chotteau ◽  
Anna Falk ◽  
My Hedhammar

The functionalized recombinant spider silk protein FN-silk can self-assemble into a 3D microfiber network. When combined with recombinant laminin521 it provides a 3D culture system suitable for expansion of hPSCs and following neural differentiation.


2004 ◽  
Vol 823 ◽  
Author(s):  
Victor J. Chen ◽  
Laura A. Smith ◽  
Peter X. Ma

AbstractReverse solid freeform (SFF) fabrication was used to create highly-controlled macroporous structures in nano-fibrous poly (L-lactic acid) (PLLA) scaffolds. By using a computer-aided design (CAD) program to create a negative template for the scaffold, the three-dimensional (3-D) mold was created on a 3-D printer using a wax. After the template was printed, a solution of PLLA in tetrahydrofuran (THF) was cast into the mold, and was subsequently phase separated at -70°C which gives the nano-fibrous morphology. This resulted in a 3-D nano-fibrous scaffold with a uniform fiber mesh throughout the entire matrix, and greatly increased the surface area within the scaffold. Fiber diameters in these scaffolds were 50-500 nm, similar to type I collagen, and the densities of the fiber meshes can be altered by changing the polymer concentration. To examine the scaffold's potential for tissue regeneration, MC3T3-E1 osteoblasts were seeded and cultured on the scaffolds. Results show that the osteoblasts attached and proliferated on the scaffolds. After 6 weeks in culture, bone-like tissue was evident within the nano-fibrous scaffolds. By having the ability to control the macroporous architecture, interconnectivity, orientation, and external shape of the scaffold, as well as the nanometer-scaled fibrous features in the pore walls, this SFF fabrication/phase separation technique has great potential to design and create ideal scaffolds for bone tissue engineering.


Materials ◽  
2016 ◽  
Vol 9 (7) ◽  
pp. 560 ◽  
Author(s):  
John Hardy ◽  
Jose Torres-Rendon ◽  
Aldo Leal-Egaña ◽  
Andreas Walther ◽  
Helmut Schlaad ◽  
...  

2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.


Sign in / Sign up

Export Citation Format

Share Document