Determining the optimal protocol for preparing an acellular scaffold of tissue engineered small-diameter blood vessels

2017 ◽  
Vol 106 (2) ◽  
pp. 619-631 ◽  
Author(s):  
Lei Pu ◽  
Jian Wu ◽  
Xingna Pan ◽  
Zongliu Hou ◽  
Jing Zhang ◽  
...  
2010 ◽  
Vol 88 (9) ◽  
pp. 855-873 ◽  
Author(s):  
Divya Pankajakshan ◽  
Devendra K. Agrawal

Tissue engineering of small diameter (<5 mm) blood vessels is a promising approach for developing viable alternatives to autologous vascular grafts. It involves in vitro seeding of cells onto a scaffold on which the cells attach, proliferate, and differentiate while secreting the components of extracellular matrix that are required for creating the tissue. The scaffold should provide the initial requisite mechanical strength to withstand in vivo hemodynamic forces until vascular smooth muscle cells and fibroblasts reinforce the extracellular matrix of the vessel wall. Hence, the choice of scaffold is crucial for providing guidance cues to the cells to behave in the required manner to produce tissues and organs of the desired shape and size. Several types of scaffolds have been used for the reconstruction of blood vessels. They can be broadly classified as biological scaffolds, decellularized matrices, and polymeric biodegradable scaffolds. This review focuses on the different types of scaffolds that have been designed, developed, and tested for tissue engineering of blood vessels, including use of stem cells in vascular tissue engineering.


Author(s):  
Rolf A. A. Pullens ◽  
Maria Stekelenburg ◽  
Carlijn V. C. Bouten ◽  
Frank P. T. Baaijens ◽  
Mark J. Post

Cardiovascular disease is still the number one cause of death in the industrialized world. Diseased small diameter blood vessels are frequently replaced by native grafts. However, these vessels have a limited life time [1], for example the patency at 10 year after coronary artery bypass grafting of saphenous vein grafts is 57% [2]. Tissue engineering (TE) of small diameter blood vessels seems a promising approach to overcome these shortcomings or address the increasing need for substitutes during follow up surgery. Mechanical conditioning of myofibroblast (MFs) seeded constructs appears to be beneficial for functional tissue properties, such as cell proliferation, ECM production and mechanical strength [3,4]. Without a functional endothelial cell (ECs) layer however, patency may be compromised by thrombogenecity. Construction of an EC layer might on the other hand affect the tissue composition during culture, as was shown for bovine ECs, which influenced proliferation and ECM production of smooth muscle cells [5].


Author(s):  
Michael T. Zaucha ◽  
Rudolph Gleason

Coronary artery disease remains to be the leading cause of morbidity and mortality in industrialized nations. Current treatments for small diameter grafts are limited by the availability of suitable autologous vessels and high thrombogenic potential of synthetic grafts. There is a clinical need to development of tissue engineered blood vessels (TEBV) suitable for vascular by pass grafting.


2017 ◽  
Vol 7 (2) ◽  
pp. 101-110 ◽  
Author(s):  
Andrea Porzionato ◽  
Maria Martina Sfriso ◽  
Alex Pontini ◽  
Veronica Macchi ◽  
Maria Ida Buompensiere ◽  
...  

2016 ◽  
Vol 9 (11) ◽  
pp. 1138-1149 ◽  
Author(s):  
Shyam K. Sathanandam ◽  
T.K. Susheel Kumar ◽  
Deepthi Hoskoppal ◽  
Lauren M. Haddad ◽  
Saradha Subramanian ◽  
...  
Keyword(s):  

2013 ◽  
Vol 843 ◽  
pp. 66-69 ◽  
Author(s):  
Hui Jing Zhao ◽  
Guo Li Zhou ◽  
Zhi Qing Yuan

Biomaterials used for vascular prostheses should possess certain strength that can keep the normal blood fluidity, as well as certain flexibility and elasticity that can resist blood pulsation pressure. In order to fabricate small diameter vascular prostheses (SDVP) that possess matchable mechanical properties with natural blood vessels, a bi-layered tubular structure composed of electrospinning blended nanofiber and silk fiber was designed and prepared in this study. The inner layer of the structure, prepared through electrospinning, was composed of Poly (L-lactide-co-ε-caprolactone) (PLCL) and silk fibroin (SF) blended nanofibers. Braided silk tube was used as the outer layer of the structure. Morphological, structural and mechanical properties including peak stress, peak strain, and Youngs modulus of the prototype bi-layered SDVP were characterized initially. Results showed that the diameter range of the blended nanofiber was between 100 and 900 nm, and the fiber diameter increased with the content increase of PLCL. Through blending PLCL together with SF, peak stress and peak strain of the electrospun inner layer were improved, and that of the Youngs modulus decreased. Meanwhile, the outer layer of SDVP was stronger and had higher Youngs modulus. Those mechanical performances of the prototype bi-layered SDVP fabricated in this study are similar to natural blood vessels, which provide a promising biomaterial that could be applied on tubular tissue engineering scaffolds.


2009 ◽  
Vol 113 (4) ◽  
pp. 2675-2682 ◽  
Author(s):  
Shudong Wang ◽  
Youzhu Zhang ◽  
Guibo Yin ◽  
Hongwei Wang ◽  
Zhihui Dong

2008 ◽  
Vol 57 ◽  
pp. 226-234 ◽  
Author(s):  
Rudolph L. Gleason ◽  
William Wan

There is a great unmet clinical need to develop small diameter tissue engineered blood vessels (TEBV) with low thrombogenicity and immune response and suitable mechanical properties. In this paper we describe experimental and computational frameworks to characterize the use of mechanical stimuli to improve the mechanical properties of TEBVs. We model the TEBV as a constrained mixture and track the production, degradation, mechanical state, and organization of each structural constituent. Specifically, we assume that individual load bearing constituents can co-exist within each neighborhood and, although they are constrained to deform together, each constituent within this neighborhood may have different natural (i.e., stress-free) configurations. Motivated by this theoretical framework, we have designed a bioreactor and biomechanical testing device for TEBVs. This device is designed to provide precise and independent control of mean and cyclic luminal flow rate, transmural pressure, and axial load over weeks and months in culture and perform intermittent biaxial biomechanical tests. This device also fits under a two-photon laser scanning microscope for 3-dimenstional imaging of the content and organization of cells and matrix constituents. These data directly support our theoretical model.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Luigi Dall’Olmo ◽  
Ilenia Zanusso ◽  
Rosa Di Liddo ◽  
Tatiana Chioato ◽  
Thomas Bertalot ◽  
...  

To overcome the issues connected to the use of autologous vascular grafts and artificial materials for reconstruction of small diameter (<6 mm) blood vessels, this study aimed to develop acellular matrix- (AM-) based vascular grafts. Rat iliac arteries were decellularized by a detergent-enzymatic treatment, whereas endothelial cells (ECs) were obtained through enzymatic digestion of rat skin followed by immunomagnetic separation of CD31-positive cells. Sixteen female Lewis rats (8 weeks old) received only AM or previouslyin vitroreendothelialized AM as abdominal aorta interposition grafts (about 1 cm). The detergent-enzymatic treatment completely removed the cellular part of vessels and both MHC class I and class II antigens. One month after surgery, the luminal surface of implanted AMs was partially covered by ECs and several platelets adhered in the areas lacking cell coverage. Intimal hyperplasia, already detected after 1 month, increased at 3 months. On the contrary, all grafts composed by AM and ECs were completely covered at 1 month and their structure was similar to that of native vessels at 3 months. Taken together, our findings show that prostheses composed of AM preseeded with ECs could be a promising approach for the replacement of blood vessels.


2000 ◽  
Vol 24 (3) ◽  
pp. 217-223 ◽  
Author(s):  
Gilberto Goissis ◽  
Sueli Suzigan ◽  
Diderot Rodrigues Parreira ◽  
Jose Vitor Maniglia ◽  
Domingo Marcolino Braile ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document