mechanical conditioning
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 17)

H-INDEX

17
(FIVE YEARS 2)

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2650
Author(s):  
Jana Šic Žlabur ◽  
Sanja Radman ◽  
Sanja Fabek Uher ◽  
Nevena Opačić ◽  
Božidar Benko ◽  
...  

Plants have evolved various adaptive mechanisms to environmental stresses, such as sensory mechanisms to detect mechanical stimuli. This plant adaptation has been successfully used in the production practice of leafy vegetables, called mechanical conditioning, for many years, but there is still a lack of research on the effects of mechanically-induced stress on the content of specialized metabolites, or phytochemicals with significant antioxidant activity. Therefore, the aim of this study was to determine the content of specialized metabolites and antioxidant capacity of lettuce and green chicory under the influence of mechanical stimulation by brushing. Mechanically-induced stress had a positive effect on the content of major antioxidants in plant cells, specifically vitamin C, total phenols, and flavonoids. In contrast, no effect of mechanical stimulation was found on the content of pigments, total chlorophylls, and carotenoids. Based on the obtained results, it can be concluded that induced mechanical stress is a good practice in the cultivation of leafy vegetables, the application of which provides high quality plant material with high nutritional potential and significantly higher content of antioxidants and phytochemicals important for human health.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 350
Author(s):  
Zheng Wang ◽  
Mark B. Luther ◽  
Mehdi Amirkhani ◽  
Chunlu Liu ◽  
Peter Horan

Heat Pumps are becoming one of the most considered mechanical conditioning equipment in our buildings. While they are popular, there appears to be quite a vast range of system types and applications in building conditioning. This paper primarily reviews the literature on heat pumps, the various types, and the consideration of design end uses. The fact that there are different energy sources for heat pumps is considered, as well as the different sinks in which energy is stored or dissipated. It is evident that advanced heat pump systems cater well to the use of renewable energy resources. Therefore, in the move towards net-zero energy building operation, the correct selection of a heat pump can help to increase self-consumption of solar PV generation and even make use of direct solar energy heating. This paper reviews the technologies for heat pump selection, application, and design for residential buildings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irini Gerges ◽  
Margherita Tamplenizza ◽  
Federico Martello ◽  
Stefano Koman ◽  
Giulia Chincarini ◽  
...  

AbstractThe use of cell-free scaffolds for the regeneration of clinically relevant volumes of soft tissue has been challenged, particularly in the case of synthetic biomaterials, by the difficulty of reconciling the manufacturing and biological performance requirements. Here, we investigated in vivo the importance of biomechanical and biochemical cues for conditioning the 3D regenerative microenvironment towards soft tissue formation. In particular, we evaluated the adipogenesis changes related to 3D mechanical properties by creating a gradient of 3D microenvironments with different stiffnesses using 3D Poly(Urethane-Ester-ether) PUEt scaffolds. Our results showed a significant increase in adipose tissue proportions while decreasing the stiffness of the 3D mechanical microenvironment. This mechanical conditioning effect was also compared with biochemical manipulation by loading extracellular matrices (ECMs) with a PPAR-γ activating molecule. Notably, results showed mechanical and biochemical conditioning equivalency in promoting adipose tissue formation in the conditions tested, suggesting that adequate mechanical signaling could be sufficient to boost adipogenesis by influencing tissue remodeling. Overall, this work could open a new avenue in the design of synthetic 3D scaffolds for microenvironment conditioning towards the regeneration of large volumes of soft and adipose tissue, with practical and direct implications in reconstructive and cosmetic surgery.


Cell Reports ◽  
2021 ◽  
Vol 35 (13) ◽  
pp. 109293
Author(s):  
Adam W. Watson ◽  
Adam D. Grant ◽  
Sara S. Parker ◽  
Samantha Hill ◽  
Michael B. Whalen ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1177
Author(s):  
Eve Hunter-Featherstone ◽  
Natalie Young ◽  
Kathryn Chamberlain ◽  
Pablo Cubillas ◽  
Ben Hulette ◽  
...  

Mechanotransduction is defined as the ability of cells to sense mechanical stimuli from their surroundings and translate them into biochemical signals. Epidermal keratinocytes respond to mechanical cues by altering their proliferation, migration, and differentiation. In vitro cell culture, however, utilises tissue culture plastic, which is significantly stiffer than the in vivo environment. Current epidermal models fail to consider the effects of culturing keratinocytes on plastic prior to setting up three-dimensional cultures, so the impact of this non-physiological exposure on epidermal assembly is largely overlooked. In this study, primary keratinocytes cultured on plastic were compared with those grown on 4, 8, and 50 kPa stiff biomimetic hydrogels that have similar mechanical properties to skin. Our data show that keratinocytes cultured on biomimetic hydrogels exhibited major changes in cellular architecture, cell density, nuclear biomechanics, and mechanoprotein expression, such as specific Linker of Nucleoskeleton and Cytoskeleton (LINC) complex constituents. Mechanical conditioning of keratinocytes on 50 kPa biomimetic hydrogels improved the thickness and organisation of 3D epidermal models. In summary, the current study demonstrates that the effects of extracellular mechanics on keratinocyte cell biology are significant and therefore should be harnessed in skin research to ensure the successful production of physiologically relevant skin models.


2020 ◽  
Author(s):  
Bijal Patel ◽  
Dan Saliganan ◽  
Ali Rteil ◽  
Loay Kabbani ◽  
Mai Lam

Abstract The ideal engineered vascular graft would utilize human-derived materials to minimize foreign body response and tissue rejection. Current biological engineered blood vessels (BEBVs) inherently lack the structure required for implantation. Current methods of mechanical conditioning to encourage extracellular matrix (ECM) deposition requires weeks to months, impeding translation. We hypothesized that an ECM scaffold would provide the structure needed. Skin dermis ECM is commonly used in reconstructive surgeries, is commercially available and is FDA-approved. We evaluated the commercially available decellularized skin dermis ECM called Alloderm for its efficacy in providing structure to biological engineered blood vessels. Alloderm was seeded with fibroblast cells typically found in the adventitia during integration into our lab’s unique protocol for generating BEBVs. To assess structure, tissue mechanics were analyzed. Standard BEBVs without Alloderm exhibited a tensile strength of 67.9 ± 9.78 kPa, whereas Alloderm integrated BEBVs showed a significant increase in strength to 1500 ± 334 kPa. In comparison, native vessel strength is 1430 ± 604 kPa. Burst pressure reached 51.3 ± 2.19 mmHg. Total collagen and fiber maturity were significantly increased due to the presence of the scaffolding material. These results demonstrate the success of Alloderm to provide structure to BEBVs in an effective way.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Heather B Hayes ◽  
Anthony M Nicolini ◽  
Colin Arrowood ◽  
Daniel Millard

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have significantly advanced in vitro cardiac safety and disese modeling, yet remain an immature representation of human myocytes. Electrical or mechanical conditioning of hiPSC-CMs facilitates functional maturation, as measured by a positive force-frequency relationship, but current in vitro protocols require 2-4 weeks of conditioning. Using array-based contractility and local electrical stimulation, we detected functionally mature phenotypes and compound responses in hiPSC-CMs after only 48 hours of chronic pacing. To mature cardiomyocytes, hiPSC-CMs were cultured on 24- and 96-well MEA plates with a dedicated stimulation electrodes. Later, hiPSC-CMs were electrically or optically paced at 2Hz for 48 hours. Multimodal measures quantified contractile and electrophysiological responses to varied pacing rates and compound addition. After 48 hours of pacing, hiPSC-CMs displayed shortened repolarization timing compared to before chronic pacing (baseline: 423 +/- 21 ms; matured: 316 +/- 15 ms), without significant beat period changes (baseline: 1255 +/- 40 ms; matured: 1314 +/- 84 ms). Contractile beat amplitude was measured using array-based impedance during spontaneous beating and at increasing pacing rates (1, 1.2, 1.5, 2, and 2.5 Hz). Before chronic pacing, beat amplitude decreased with increasing pacing rate; after chronic pacing, the same wells displayed increased beat amplitudes with increasing pacing rate. The matured wells also showed enhanced sensitivity to positive inotropes, such as isoproterenol, digoxin, omecamtiv mecarbil, and dobutamine. Local extracellular action potentials (LEAP) further revealed altered electrophysiological response to ranolazine, a multichannel blocker. Unpaced control wells exhibited dose-dependent APD90 prolongation in response to ranolazine, whereas matured wells showed no APD90 change. Similar results were seen with 48 hour of optogenetic pacing at 2 Hz. Overall, hiPSC-CMs chronically paced for only 48 hours exhibited more mature functional phenotypes, including a positive force-frequnecy relationship, enhanced ionotrope sensitivity, and altered compound response.


Sign in / Sign up

Export Citation Format

Share Document