Leptin Induces Oxidative Stress Through Activation of NADPH Oxidase in Renal Tubular Cells: Antioxidant Effect of L-Carnitine

2016 ◽  
Vol 117 (10) ◽  
pp. 2281-2288 ◽  
Author(s):  
Antonio J. Blanca ◽  
María V. Ruiz-Armenta ◽  
Sonia Zambrano ◽  
Rocío Salsoso ◽  
José L. Miguel-Carrasco ◽  
...  
2013 ◽  
Vol 304 (11) ◽  
pp. F1366-F1374 ◽  
Author(s):  
Fei Fang ◽  
George C. Liu ◽  
Crystal Kim ◽  
Rana Yassa ◽  
Joyce Zhou ◽  
...  

Obesity is a risk factor for chronic kidney disease (CKD) progression. Circulating levels of adiponectin, an adipokine, decrease with obesity and play a protective role in the cardiovascular system. We hypothesized that adiponectin might also protect the kidney. Because activation of the renin-angiotensin system (RAS) is a contributor to CKD progression, we tested our hypothesis by studying the interactions between adiponectin and angiotensin II (ANG II) in renal tubular cells. Primary human renal proximal tubule cells expressed both adiponectin receptor 1 and 2 (adipoR1 and R2). ANG II-induced NADPH oxidase activation and oxidative stress were attenuated by adiponectin and dependent on adipoR1. Activation of AMPK with 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) mimicked, while inhibition of AMPK with compound C abrogated, the effect of adiponectin on ANG II-induced activation of NADPH oxidase. Similarly, the effect of adiponectin was recapitulated by the stable cAMP analogs 4-chlorophenylthio (pCPT)-cAMP and dibutyryl (db)-cAMP and blocked by the adenylate cyclase inhibitor SQ22536. Adiponectin did not activate PKA in renal tubular cells, and the specific PKA inhibitor myristoylated PKI (14–22) amide failed to block the inhibitory effect of adiponectin on ANG II-induced NADPH oxidase activation. In contrast, the specific Epac activator 8-(4-chlorophenylthio)-2′-O-methyl (8-CPT-2-O-Me)-cAMP blocked ANG II-induced activation of NADPH oxidase, an effect that was reversed by coincubation with the AMPK inhibitor compound C. Finally, adiponectin attenuated ANG II-induced NF-κB activation and fibronectin protein expression. These in vitro findings support the hypothesis that adiponectin may attenuate the deleterious effects of ANG II in the kidney and play a protective role in CKD.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Baolong Qin ◽  
Qing Wang ◽  
Yuchao Lu ◽  
Cong Li ◽  
Henglong Hu ◽  
...  

Calcium oxalate (CaOx) is the most common type of urinary stone. Increase of ROS and NADPH oxidase gives rise to inflammation and injury of renal tubular cells, which promotes CaOx stone formation. Recent studies have revealed that the renin-angiotensin system might play a role in kidney crystallization and ROS production. Here, we investigated the involvement of Ang II/AT1R and losartan in CaOx stone formation. NRK-52E cells were incubated with CaOx crystals, and glyoxylic acid-induced hyperoxaluric rats were treated with losartan. Oxidative stress statuses were evaluated by detection of ROS, oxidative products (8-OHdG and MDA), and antioxidant enzymes (SOD and CAT). Expression of NADPH oxidase subunits (Nox2 and Nox4), NF-κB pathway subunits (p50 and p65), and stone-related proteins such as OPN, CD44, and MCP-1 was determined by Western blotting. The results revealed upregulation of Ang II/AT1R by CaOx treatment. CaOx-induced ROS and stone-related protein upregulation were mediated by the Ang II/AT1R signaling pathway. Losartan ameliorated renal tubular cell expression of stone-related proteins and renal crystallization by inhibiting NADPH oxidase and oxidative stress. We conclude that losartan might be a promising preventive and therapeutic candidate for hyperoxaluria nephrolithiasis.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Dongqing Zha ◽  
Saiqun Wu ◽  
Ping Gao ◽  
Xiaoyan Wu

We examined whether and how uric acid induces epithelial to mesenchymal transition (EMT) in renal tubular cells, along with the mechanism by which telmisartan acts on uric acid-induced renal injury. Rat renal proximal tubular epithelial cells (NRK-52E) were exposed to various concentrations of uric acid in the presence or absence of telmisartan. Treatment with uric acid increased the expression of α-SMA, decreased the expression of E-cadherin, and promoted EMT in NRK-52E cells. Uric acid treatment also led to increased endothelin-1 (ET-1) production, activation of extracellular-regulated protein kinase 1/2 (ERK1/2), and the upregulation of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). Use of ET-1 receptor inhibitor (BQ123 or BQ788) could inhibit uric acid-induced EMT in NRK-52E cells. Pretreatment with the ERK inhibitor (U0126 or PD98059) suppressed the release of ET-1 and EMT induced by uric acid. Additionally, pretreatment with a traditional antioxidant (diphenylene iodonium or apocynin) inhibited the activation of ERK1/2, release of ET-1, and uric acid-induced EMT in NRK-52E cells. These findings suggested that uric acid-induced EMT in renal tubular epithelial cells occurs through NADPH oxidase-mediated ERK1/2 activation and the subsequent release of ET-1. Furthermore, telmisartan (102 nmol/L to 104 nmol/L) inhibited the expression of NOX4, intracellular reactive oxygen species (ROS), activation of ERK1/2, and the release of ET-1 in a dose-dependent manner, thereby preventing uric acid-induced EMT in NRK-52E. In conclusion, telmisartan could ameliorate uric acid-induced EMT in NRK-52E cells likely through inhibition of the NADPH oxidase/ERK1/2/ET-1 pathway.


2015 ◽  
Vol 12 (4) ◽  
pp. 6086-6092 ◽  
Author(s):  
TSAI-KUN WU ◽  
CHYOU-WEI WEI ◽  
YING-RU PAN ◽  
SHUR-HUEIH CHERNG ◽  
WEI-JUNG CHANG ◽  
...  

2008 ◽  
Vol 179 (4) ◽  
pp. 1620-1626 ◽  
Author(s):  
Hyoung Keun Park ◽  
Byong Chang Jeong ◽  
Mi-Kyung Sung ◽  
Mi-Young Park ◽  
Eun Young Choi ◽  
...  

2005 ◽  
Vol 33 (4) ◽  
pp. 261-266 ◽  
Author(s):  
Yasunori Itoh ◽  
Takahiro Yasui ◽  
Atsushi Okada ◽  
Keiichi Tozawa ◽  
Yutaro Hayashi ◽  
...  

2016 ◽  
Vol 13 (5) ◽  
pp. 4343-4348 ◽  
Author(s):  
Zhuohang Li ◽  
Yiyu Sheng ◽  
Cheng Liu ◽  
Kuiqing Li ◽  
Xin Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document