scholarly journals Telmisartan Attenuates Uric Acid-Induced Epithelial-Mesenchymal Transition in Renal Tubular Cells

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Dongqing Zha ◽  
Saiqun Wu ◽  
Ping Gao ◽  
Xiaoyan Wu

We examined whether and how uric acid induces epithelial to mesenchymal transition (EMT) in renal tubular cells, along with the mechanism by which telmisartan acts on uric acid-induced renal injury. Rat renal proximal tubular epithelial cells (NRK-52E) were exposed to various concentrations of uric acid in the presence or absence of telmisartan. Treatment with uric acid increased the expression of α-SMA, decreased the expression of E-cadherin, and promoted EMT in NRK-52E cells. Uric acid treatment also led to increased endothelin-1 (ET-1) production, activation of extracellular-regulated protein kinase 1/2 (ERK1/2), and the upregulation of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). Use of ET-1 receptor inhibitor (BQ123 or BQ788) could inhibit uric acid-induced EMT in NRK-52E cells. Pretreatment with the ERK inhibitor (U0126 or PD98059) suppressed the release of ET-1 and EMT induced by uric acid. Additionally, pretreatment with a traditional antioxidant (diphenylene iodonium or apocynin) inhibited the activation of ERK1/2, release of ET-1, and uric acid-induced EMT in NRK-52E cells. These findings suggested that uric acid-induced EMT in renal tubular epithelial cells occurs through NADPH oxidase-mediated ERK1/2 activation and the subsequent release of ET-1. Furthermore, telmisartan (102 nmol/L to 104 nmol/L) inhibited the expression of NOX4, intracellular reactive oxygen species (ROS), activation of ERK1/2, and the release of ET-1 in a dose-dependent manner, thereby preventing uric acid-induced EMT in NRK-52E. In conclusion, telmisartan could ameliorate uric acid-induced EMT in NRK-52E cells likely through inhibition of the NADPH oxidase/ERK1/2/ET-1 pathway.

2010 ◽  
Vol 299 (2) ◽  
pp. F336-F346 ◽  
Author(s):  
Zhou Yang ◽  
Wang Xiaohua ◽  
Jiang Lei ◽  
Tan Ruoyun ◽  
Xiong Mingxia ◽  
...  

Urate is produced as the major end product of purine metabolism. In the last decade, the incidence of hyperuricemia increased markedly, and similar trends in the epidemiology of metabolic syndrome have been observed. Hyperuricemia is associated with renal disease, and recent studies have reported that mild hyperuricemia results in hypertension, intrarenal vascular disease, and renal injury. This has led to the hypothesis that uric acid may contribute to renal fibrosis and progressive renal disease. Our purpose was to investigate the relationship between uric acid and renal tubular injury. We applied the method of intraperitoneal injection of uric acid to generate the hyperuricemic mouse model. Compared with the saline injection group, the expression of lysyl oxidase (LOX) and fibronectin in kidneys was increased significantly in hyperuricemic groups. In vitro, uric acid significantly induced NRK-52E cells to express the ECM marker fibronectin, as well as LOX, which plays a pivotal role in ECM maturation, in a time- and dose-dependent manner. Upregulation of the urate transporter URAT1, which is located in the apical membrane of proximal tubules, sensitized the uric acid-induced fibronectin and LOX induction, while both knocking down URAT1 expression in tubular epithelial cells by RNA interference and inhibiting URAT1 function pharmacologically attenuated LOX and fibronectin expression. Furthermore, knockdown of LOX expression by a small interfering RNA strategy led to a decrease in fibronectin abundance induced by uric acid treatment. In addition, evidence of a uric acid-induced activation of the NF-κB signaling cascade was observed. Our findings highlight a need for carefully reevaluating our previous view on the pathological roles of hyperuricemia in the kidney and nephropathy induced by uric acid in clinical practice.


2017 ◽  
Vol 46 (4) ◽  
pp. 333-342 ◽  
Author(s):  
Huifang Liu ◽  
Jiachuan Xiong ◽  
Ting He ◽  
Tangli Xiao ◽  
Yan Li ◽  
...  

Background: Hyperuricemia is an independent risk factor for causing chronic kidney disease and contributes to kidney fibrosis. After urate crystals get deposited in the kidney, they can cause hyperuricemia nephropathy, leading to glomerular hypertrophy and renal tubular interstitial fibrosis. Recent data showed that uric acid (UA) could induce epithelial mesenchymal transition (EMT) of renal tubular cells, in which NRLP3 inflammatory pathway was involved. However, whether TLR4/NF-κB signaling pathway is also involved in EMT of renal tubular cells induced by UA is not clear. Methods: Human renal tubular epithelial cells (HK-2) were directly treated with UA and the phenotypic transition was detected by morphological changes and the molecular markers of EMT. The activation of the TLR4/NF-κB signaling pathway induced by UA was measured by Western blot and its involvement was further confirmed by the inhibition of NF-κB activation or knockdown of toll like receptor 4 (TLR4) expression. Results: UA induced obvious morphological changes of HK-2 cell, accompanied with altered molecular markers of EMT including fibronectin, α-SMA and E-cadherin. In addition, UA significantly upregulated the gene expression of interleukin-1β and tumor necrosis factor-α in a time- and dose-dependent manner. Furthermore, UA significantly activated the TLR4/NF-κB signaling pathway in HK-2 cells, while the inhibition of the TLR4 expression by siRNA and NF-κB activation by PDTC significantly attenuated EMT induced by UA in HK-2 cells. Conclusions: UA can induce EMT in renal tubular epithelial cells by the activation of the TLR4/NF-κB signaling pathway, and the targeted intervention of the TLR4/NF-κB signaling pathway might effectively inhibit UA-induced renal interstitial fibrosis mediated by EMT.


1983 ◽  
Vol 245 (1) ◽  
pp. C163-C163 ◽  
Author(s):  
A. Hassid

Page C369: A. Hassid. “Inhibition of prostaglandin biosynthesis in renal (MDCK) cells by cAMP.” Page C369: in the abstract, the first sentence should read: Cultured renal tubular cells (MDCK) have many of the biological properties of cortical medullary tubular epithelial cells, including the ability to synthesize prostaglandin E2 (PGE2) as the major arachidonate metabolite. Page C373: Table 3 should read as follows: (See PDF)


2002 ◽  
Vol 70 (5) ◽  
pp. 2650-2656 ◽  
Author(s):  
B. Kreft ◽  
W. J. Jabs ◽  
T. Laskay ◽  
M. Klinger ◽  
W. Solbach ◽  
...  

ABSTRACT In renal bacterial infections granulocytes are of major importance in the primary immune defense against invading pathogens. However, the mechanisms of granulocytic activation in renal interstitial invasion have not been clarified. Renal tubular epithelial cell mechanisms inducing granulocytic activation and bacterial killing may include tubular cell expression of Tamm-Horsfall protein (THP), a urinary protein that is known to enhance cytokine expression in monocytes. We studied the role of THP in granulocytic activation. A strong binding of THP to human granulocytes was demonstrated by fluorescence-activated cell sorter analysis. Urinary THP and supernatants of THP-expressing cultured tubular epithelial cells (MDCK) enhanced interleukin-8 (IL-8) expression by human granulocytes. Renal tubular cells growing polarized on polycarbonate membranes were used to study apical versus basal THP expression. By electron microscopy THP immunoreactivity was exclusively found on the apical surfaces of tubular cells and was absent on the basolateral cell membrane. In the apical cell culture compartment we found significantly more stimulatory activity for granulocytic IL-8 expression. CD62L, a selectin less expressed in activated granulocytes, was decreased in granulocytes incubated with urinary THP and in supernatants of THP-producing renal tubular cells but not in supernatants from THP-negative cells. Again, the effect on CD62L expression was found only in apical culture media and was absent in the basal compartment. In summary our data give evidence that renal tubular cell THP expression may be relevant in kidney diseases since THP is a potent activator of human granulocytes. The regulation of apical versus basal THP expression and release in vivo may be crucial in the induction of the inflammatory response, e.g., in bacterial renal diseases.


2013 ◽  
Vol 304 (5) ◽  
pp. F471-F480 ◽  
Author(s):  
Eun-Sun Ryu ◽  
Mi Jin Kim ◽  
Hyun-Soo Shin ◽  
Yang-Hee Jang ◽  
Hack Sun Choi ◽  
...  

Recent experimental and clinical studies suggest a causal role of uric acid in the development of chronic kidney disease. Most studies have focused on uric acid-induced endothelial dysfunction, oxidative stress, and inflammation in the kidney. The direct effects of uric acid on tubular cells have not been studied in detail, and whether uric acid can mediate phenotypic transition of renal tubular cells such as epithelial-to-mesenchymal transition (EMT) is not known. We therefore investigated whether uric acid could alter E-cadherin expression and EMT in the kidney of hyperuricemic rats and in cultured renal tubular cells (NRK cells). Experimental hyperuricemia was associated with evidence of EMT before the development of significant tubulointerstitial fibrosis at 4 wk, as shown by decreased E-cadherin expression and an increased α-smooth muscle actin (α-SMA). Allopurinol significantly inhibited uric acid-induced changes in E-cadherin and α-SMA with an amelioration of renal fibrosis at 6 wk. In cultured NRK cells, uric acid induced EMT, which was blocked by the organic anion transport inhibitor probenecid. Uric acid increased expression of transcriptional factors associated with decreased synthesis of E-cadherin (Snail and Slug). Uric acid also increased the degradation of E-cadherin via ubiquitination, which is of importance since downregulation of E-cadherin is considered to be a triggering mechanism for EMT. In conclusion, uric acid induces EMT of renal tubular cells decreasing E-cadherin synthesis via an activation of Snail and Slug as well as increasing the degradation of E-cadherin.


Author(s):  
Haiyan Xu ◽  
Dan Song ◽  
Renfang Xu ◽  
Xiaozhou He

AbstractAberrant expression of B cell–activating factor belonging to TNF superfamily (BAFF) and its receptors results in abnormal biological activities in hematopoietic and non-hematopoietic cells and is closely associated with the occurrence and development of various diseases. However, the biological significance and potential mechanisms underlying BAFF signaling in renal tubular epithelial cells (RTECs) remain unknown. This study aimed to investigate the biological role of BAFF signaling in RTECs. Mice primary RTECs were applied. The proliferation status and apoptotic rates were examined by MTS assay and flow cytometry, respectively. The expression of BAFF and its receptors was analyzed via flow cytometry and sodium ion transport function, and cytokeratin-18 expression was detected through immunofluorescence staining. In addition, Pin1 was knocked down via siRNA and its expression was assessed through reverse transcription PCR. Lastly, western blotting was performed to analyze E-cadherin, ɑ-SMA, and Pin1 expression. Results suggested that BAFF-R was significantly upregulated upon IFN-γ stimulation, and enhancement of BAFF signaling promoted cell survival and reduced their apoptotic rate, while simultaneously reducing the epithelial phenotype and promoting the interstitial transformation of cells. Furthermore, Pin1 was significantly increased, along with the upregulation of BAFF signaling in the RTECs, and participated in interstitial transformation induced by BAFF signaling. Collectively, the present results elucidate the potential mechanism of loss of normal function of RTECs under long-term high dose of BAFF stimulation provides a potential therapeutic target for renal interstitial fibrosis, and underlining mechanisms of shortening of long-term outcomes of kidney allografts via augmenting of BAFF signaling.


Sign in / Sign up

Export Citation Format

Share Document