How does a hydrocarbon staple affect peptide hydrophobicity?

2015 ◽  
Vol 36 (10) ◽  
pp. 773-784 ◽  
Author(s):  
Adelene Y. L. Sim ◽  
Chandra Verma
Biochemistry ◽  
1993 ◽  
Vol 32 (5) ◽  
pp. 1251-1256 ◽  
Author(s):  
Suzanne K. Doud ◽  
Margaret M. Chou ◽  
Debra A. Kendall

2017 ◽  
Author(s):  
Shixiang Yao ◽  
Chibuike Udenigwe

Post-translational modifications (PTMs) often <a></a><a>occur in proteins</a> and play a regulatory role in protein function. However, the role of PTMs in food-derived peptides remains largely unknown. The shotgun peptidomics strategy was employed to identify PTMs in peptides from potato protein hydrolysates. Various hydrophobicity-inducing PTMs were found to be located in different potato peptides, <i>e.g</i>. acetylation of lysine, N-terminal of proteins and peptides, C-terminal amidation, asparagine/glutamine deamidaiton, methylation and trimethylation, methionine oxidation, and N-terminal pyro-glutamate formation. Some of the PTMs are likely formed by chemical reactions that occur during isolation and proteolytic processing of potato proteins. The PTMs enhance peptide hydrophobicity, which can improve bioactivity, decrease solubility and increase the bitterness of peptides. This is the first report that food-derived peptides are widely modified by various PTMs associated with hydrophobicity-inducing structural changes. This finding will enhance understanding of the behaviour of bioactive peptides in biological matrices.


Biochemistry ◽  
1997 ◽  
Vol 36 (20) ◽  
pp. 6124-6132 ◽  
Author(s):  
Torsten Wieprecht ◽  
Margitta Dathe ◽  
Michael Beyermann ◽  
Eberhard Krause ◽  
W. Lee Maloy ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Qi Huang ◽  
Tracy Palmer

ABSTRACT The general secretory pathway (Sec) and twin-arginine translocase (Tat) operate in parallel to export proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. Substrates are targeted to their respective machineries by N-terminal signal peptides that share a tripartite organization; however, Tat signal peptides harbor a conserved and almost invariant arginine pair that is critical for efficient targeting to the Tat machinery. Tat signal peptides interact with a membrane-bound receptor complex comprised of TatB and TatC components, with TatC containing the twin-arginine recognition site. Here, we isolated suppressors in the signal peptide of the Tat substrate, SufI, that restored Tat transport in the presence of inactivating substitutions in the TatC twin-arginine binding site. These suppressors increased signal peptide hydrophobicity, and copurification experiments indicated that they restored binding to the variant TatBC complex. The hydrophobic suppressors could also act in cis to suppress substitutions at the signal peptide twin-arginine motif that normally prevent targeting to the Tat pathway. Highly hydrophobic variants of the SufI signal peptide containing four leucine substitutions retained the ability to interact with the Tat system. The hydrophobic signal peptides of two Sec substrates, DsbA and OmpA, containing twin lysine residues, were shown to mediate export by the Tat pathway and to copurify with TatBC. These findings indicate that there is unprecedented overlap between Sec and Tat signal peptides and that neither the signal peptide twin-arginine motif nor the TatC twin-arginine recognition site is an essential mechanistic feature for operation of the Tat pathway. IMPORTANCE Protein export is an essential process in all prokaryotes. The Sec and Tat export pathways operate in parallel, with the Sec machinery transporting unstructured precursors and the Tat pathway transporting folded proteins. Proteins are targeted to the Tat pathway by N-terminal signal peptides that contain an almost invariant twin-arginine motif. Here, we make the surprising discovery that the twin arginines are not essential for recognition of substrates by the Tat machinery and that this requirement can be bypassed by increasing the signal peptide hydrophobicity. We further show that signal peptides of bona fide Sec substrates can also mediate transport by the Tat pathway. Our findings suggest that key features of the Tat targeting mechanism have evolved to prevent mistargeting of substrates to the Sec pathway rather than being a critical requirement for function of the Tat pathway.


2006 ◽  
Vol 51 (4) ◽  
pp. 1398-1406 ◽  
Author(s):  
Yuxin Chen ◽  
Michael T. Guarnieri ◽  
Adriana I. Vasil ◽  
Michael L. Vasil ◽  
Colin T. Mant ◽  
...  

ABSTRACT In the present study, the 26-residue amphipathic α-helical antimicrobial peptide V13KL (Y. Chen et al., J. Biol. Chem. 2005, 280:12316-12329, 2005) was used as the framework to study the effects of peptide hydrophobicity on the mechanism of action of antimicrobial peptides. Hydrophobicity was systematically decreased or increased by replacing leucine residues with less hydrophobic alanine residues or replacing alanine residues with more hydrophobic leucine residues on the nonpolar face of the helix, respectively. Hydrophobicity of the nonpolar face of the amphipathic helix was demonstrated to correlate with peptide helicity (measured by circular dichroism spectroscopy) and self-associating ability (measured by reversed-phase high-performance liquid chromatography temperature profiling) in aqueous environments. Higher hydrophobicity was correlated with stronger hemolytic activity. In contrast, there was an optimum hydrophobicity window in which high antimicrobial activity could be obtained. Decreased or increased hydrophobicity beyond this window dramatically decreased antimicrobial activity. The decreased antimicrobial activity at high peptide hydrophobicity can be explained by the strong peptide self-association which prevents the peptide from passing through the cell wall in prokaryotic cells, whereas increased peptide self-association had no effect on peptide access to eukaryotic membranes.


Sign in / Sign up

Export Citation Format

Share Document